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Abstract 

Single-molecule methods have the potential to provide information about 

conformational dynamics and molecular interactions that cannot be obtained by other 

methods.  Removal of ensemble averaging provides several benefits, including the ability 

to detect heterogeneous populations and the ability to observe asynchronous reactions.   

Single-molecule diffusion methodologies using fluorescence resonance energy 

transfer (FRET) are developed to monitor conformational dynamics while minimizing 

perturbations introduced by interactions between molecules and surfaces.  These methods 

are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-

domain protein, and of single-stranded DNA (ssDNA) homopolymers.  Confocal 

microscopy is used in combination with sensitive detectors to detect bursts of photons 

from fluorescently labeled biomolecules as they diffuse through the focal volume.  These 

bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency.  

Advances in data acquisition and analysis techniques that are providing a more complete 

picture of the accessible molecular information are discussed.  

Photon Arrival-time Interval Distribution (PAID) analysis is a new method for 

monitoring macromolecular interactions by fluorescence detection with simultaneous 

determination of coincidence, brightness, diffusion time, and occupancy (proportional to 

concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal 

detection volume.  This method is based on recording the time of arrival of all detected 

photons, and then plotting the two-dimensional histogram of photon pairs, where one axis 

is the time interval between each pair of photons 1 and 2, and the second axis is the 

number of other photons detected in the time interval between photons 1 and 2. PAID is 
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related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram 

onto the time interval axis.  PAID extends auto- and cross-correlation FCS by measuring 

the brightness of fluorescent species.  A data-fitting model is developed, which is used to 

simultaneously determine coincidence, brightness, diffusion time, and occupancy from 

experiments performed on fluorophore-labeled dsDNA test samples.  Using simulations, 

the performance of PAID is compared with existing methods.  The statistical accuracy of 

the parameters extracted using PAID exceeds or matches the accuracy of the other 

methods, while providing additional information.  
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1. Introduction 

Although we most often think about and model molecular systems in terms of 

individuals, experimental science has been dominated by measurements that result in 

ensemble averages.  This has traditionally hidden much of the rich variety present at 

microscopic and mesoscopic scales.  However, over the last decade, single-molecule 

methods have rapidly become an important tool in the repertoire of the experimentalist, 

with implications in a host of scientific disciplines.[1-7]  Single-molecule measurements 

are especially useful for the study of complex systems, which are ubiquitous in biology.   

For systems involving static or dynamic heterogeneity, single molecule methods provide 

the unique ability to directly probe distributions of static properties and dynamics of 

interconversion between different states of the system, without the need to synchronize or 

trigger the interconversion.  This ability is crucial in many biological contexts, where 

triggering is not possible, or where ensembles of molecules moving stochastically on 

complex reaction landscapes quickly lose their coherence, resulting in averaged behavior.  

Examples range from enzyme reactions with proposed multiple conformational substates, 

[8, 9] and protein folding with multiple unfolded states, pathways, intermediates and 

transition regions, [10-14] to interactions between cell-surface receptors or more 

downstream components of signal transduction pathways[15, 16]. Other examples 

include interactions between proteins, DNA and RNA during cellular functions such as 

recombination, transcription and translation, and aggregation processes that lead to 

diseases such as Alzheimer’s and Creutzfeldt-Jakob diseases [17-20].  Single molecule 

methods also permit the observation of processes at extremely low molecular 
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concentrations;  for example, conformational properties of individual prion proteins 

under aggregation conditions may be studied.  A very intriguing application of single 

molecule detection is the simultaneous observation of transitions occurring in different 

parts of a system, allowing the direct evaluation of synergistic effects during biopolymer 

structural transitions, assembly or enzyme catalysis.  Finally, these methods may lead to 

significant technical advances in areas such as high-throughput screening and DNA 

sequencing [4, 21-23].  Applications in the field of biological single molecule 

fluorescence spectroscopy have been elaborated in several excellent reviews [2, 7, 24-

26].  

The sensitivity to detect single molecules is useful even in situations where more 

than one molecule is detected at a time.  Fluorescence Correlation Spectroscopy (FCS) 

[21, 27-29], two-color cross-correlation spectroscopy [29-31], and related methods are 

sensitive to single molecules diffusing in and out of the detection volume.  One- and two-

channel FCS have been used to analyze, sort, and detect conformational states of a few or 

single molecules in the excitation volume.  FCS and related methods are especially useful 

for detecting and characterizing macromolecular interactions (see section 3). 

There are two basic requirements for detection of single molecules.  The signal of 

a particular molecule must be discriminated from other sources.  Background sources and 

contributions from other molecules must be minimized or eliminated.  For room-

temperature applications, this means that a detection volume needs to be defined such 

that only one molecule is present at a time (at cryogenic temperatures, use of the narrow 

zero-phonon aborption line has been used to select single molecules).  The size of the 

detection volume is limited by the diffraction of light (at visible wavelengths, this limit is 
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a few hundred nanometers). The detection volume is most commonly defined by using 

confocal microscopy, where a tightly focused laser excitation and a detection pinhole 

define a detection volume on the order of a femtoliter.  Another common method is total 

internal reflection microscopy in combination with a high-sensitivity CCD camera (not 

discussed here).  After defining a suitable detection volume, the concentration of the 

fluorescent species is adjusted so that on average less than one molecule of that species is 

present at a time.   

The detection of fluorescence from single molecules involves repeated cycling of 

the molecule between ground and singlet excited states, and detection of the series of 

emitted photons; non-radiative relaxation of the excited state results in a reduction of the 

maximum photon flux.  The signal from the molecule itself must be large enough that the 

intrinsic noise in photon counting measurements is overcome.  The fluorophores, 

fluorescence collection optics, and photon detectors are all critical in maximizing photon 

flux and detection efficiency, and thus the signal strength. 

Site-specific labeling of biomolecules with appropriate dyes is a prerequisite for 

single-molecule experiments [2].  Fluorescently labeled single biomolecules can be 

detected in two configurations, either immobilized (in a matrix or by surface attachment), 

or freely diffusing in solution.  These two detection formats provide different and 

complementary kinds of information.   

With immobilized molecules, a particular molecule can be observed over an 

extended period of time, and a time-trace of its properties continuously recorded. This 

can result in the observation of its stochastic fluctuations under equilibrium or non-

equilibrium conditions, and represents the most complete characterization of the 
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molecule.  However, care must be taken to ensure minimal perturbation due to the 

immobilization process.   

In the other format, when diffusing or flowing single molecules in a liquid 

traverse the laser excitation volume, fluorescence photon-bursts are generated.  Such 

bursts can be analyzed for their duration, brightness, spectrum, and fluorescence lifetime, 

thereby providing molecular information on identity, size, diffusion coefficient, and 

concentration [4, 21]. These bursts are short (typically millisecond timescale) and provide 

little information on slower fuctuations.  However, they can provide invaluable 

information about the distributions of molecular properties of interest undisturbed by 

surface effects, and changes in these distributions under non-equilibrium conditions.  

Since a large number of events (photon bursts) can be collected in a relatively short time, 

statistical analyses of these data are possible and histograms can be constructed.  Most 

notably, sub-populations of molecules in heterogeneous ensembles can be identified [32-

34], and the properties of these subpopulations individually interrogated.  For example, 

two-color burst analysis [30], and multiple-lifetime [32] approaches for identification and 

separation were suggested and implemented.   

This dissertation will focus on the development of single-molecule methods 

aimed at studying conformational dynamics of and interactions between freely diffusing 

fluorescent biological systems, minimally perturbed by surfaces.  Single-molecule 

methods for studying conformational dynamics are developed in section 2.  These 

methods are applied to the folding of Chymotrypsin Inhibitor 2 (CI2) and to the dynamics 

of single-stranded DNA (ssDNA).  A new method for studying macromolecular 

interactions, Photon Arrival-time Interval Distribution (PAID) analysis, is developed in 



 

5

section 3.  This new method extends FCS and cross-correlation FCS by adding new 

photon counting dimensions, taking advantage of more of the information in the photon 

data streams.   
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2. Single-molecule spectroscopy for conformational dynamics 

Conformational dynamics of biological molecules often play an important role in 

their function.  For example, motor proteins use chemical energy to drive conformational 

transitions that perform mechanical work.  F1F0 Atp synthase uses a proton gradient 

across the mitochondrial membrane to synthesize ATP from phosphate and ADP [35].  

The F0 portion is the ion “turbine” which exchanges ions for a rotary “shaft” motion.  

This shaft in turn drives conformational changes in the f1 portion that provide the energy 

to produce ATP.  Extensive conformational dynamics are also a general feature of the 

polymeric properties of disordered biomolecules.  The dynamics can have positive or 

negative effects.  The conformational dynamics of disordered polypeptide chain 

combined with specific interactions between residues drives protein folding [36, 37].  The 

dynamics of the long DNA molecules in eukaryotes are reined in by wrapping them on 

histones [38].  Without these restraints, entanglement and breakage would often occur.  

The ability to monitor such conformational dynamics on individual molecules is one of 

the most promising applications of single-molecule spectroscopy. 

2.1. Single-molecule observables for conformational dynamics 

The two primary tools used in single-molecule fluorescence spectroscopy to 

measure conformational dynamics are Fluorescence Resonance Energy Transfer (FRET) 

and Fluorescence Polarization Anisotropy (FPA).  FRET is used to monitor changes in 

distance between two fluorophores attached to two points in the same molecule, while 
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FPA is used to monitor changes in the orientation of the molecules or in the freedom of 

rotational motion of the fluorophore.  Both can be monitored with ratiometric and 

lifetime measurements: in single-molecule measurements, ratiometric measurements are 

performed by comparing the numbers of photons counted in distinct detection channels, 

and lifetime measurements are performed using Time-Correlated Single Photon Counting 

(TCSPC; described later). 

2.1.1. Fluorescence Resonance Energy Transfer 

FRET is the non-radiative transfer of electronic excitation energy from donor to 

acceptor fluorescent molecules via a weak dipole-dipole coupling mechanism.  Fig. 2.1 

Fig. 2.1: Fluorescence Resonance Energy Transfer (FRET) between a donor molecule 
(yellow) and an acceptor molecule (red) occurs via a dipole-dipole interaction 
mechanism. FRET depends on the distance between and relative orientations of the 
two dipole moments of the molecules, shown in A.  Significant FRET occurs when the 
emission spectrum of the donor has a significant overlap with the absorption spectrum 
of the acceptor (bottom of A).  The distance dependence of FRET is illustrated in B.  
When the molecule are close, most of the detected emission comes from the acceptor, 
shown in red.  When far away, most of the detected emission comes from the donor.  
At a distance R0, half of the emission comes from the donor, and half comes from the 
acceptor. 
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illustrates the important parameters that affect FRET.  FRET requires a resonance 

between the emission of a donor molecule and the absorption of an acceptor molecule, 

and depends critically on the relative orientations of the dipole moments of the donor and 

acceptor molecules (Fig. 2.1A).  Most importantly, FRET has a strong dependence on the 

distance between the two fluorophores (Fig. 2.1B).  The rate of FRET between a donor 

fluorophore and an acceptor fluorophore at a distance R  is given by  
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0
FRET

1

D

Rk
Rτ

 =  
 

 (2.1) 

where 1d dkτ =  is the fluorescence lifetime of the donor in the absence of the acceptor 

and 0R  is the distance at which the fraction of excitations transferred to the acceptor is 

50%.  0R  is given by, 

 ( ) ( ) ( ) ( )
2

6 4
0 5 4

0

9000 ln10
128

d
d a

Q
R F d

Nn
κ

λ ε λ λ λ
π

∞

= ∫  (2.2) 

where dQ  is the quantum efficiency of the donor, N is Avogadro’s number, n is the 

index of refraction of the medium between the fluorophores, dF is the normalized 

emission spectrum of the donor, ( )aε λ is the extinction coefficient of the acceptor at the 

wavelengthλ , and 2κ  is the orientation factor for the interaction between the donor and 

acceptor.  The two most problematic factors are n  and 2κ .  The index of refraction n  

depends on the solution and the organic matter (protein or DNA) that lies between the 

two fluorophores.  The second problematic factor is the orientation factor 2κ , given by 

the following equation: 

 ( ) 22 sin sin cos 2cos cosd a d a a dκ θ θ φ φ θ θ= − −    (2.3) 
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The definitions of these angles for the donor and acceptor fluorophores are shown in Fig. 

2.2.  If rotational diffusion is very fast compared to the fluorescence lifetime, it is 

possible to substitute the value 2 2 3κ =  in (2.2).  If not, then the range of possible values 

for 2κ  must be accounted for in calculations of distance [39]. 

The energy transfer efficiency E  (or quantum yield for energy transfer) is 

calculated by comparing the rate of FRET FRETk  to the rate of de-excitation of the donor 

singlet excited state ( 1d dk τ= ), 

 FRET

FRET d

kE
k k

=
+

 (2.4) 

 E  decreases with R, the distance between the two dyes, ( )6
01 1E R R = +   [40].  Stryer 

and Haugland’s work demonstrated this distance dependence in 1967, [41] and since 

then, FRET has been used as a spectroscopic ruler in ensemble experiments [40, 42].  It 

allows distance measurements on the 20-80Å scale and is a tool well suited to studying 

conformations of biological macromolecules.  FRET was first observed at the single 

molecule level in 1996 by Ha et al, who used near field optical microscopy to observe 

energy transfer between two dyes on a dry surface [43].  More recently, Deniz at al used 

 
Fig. 2.2: Definitions of angles used for calculation of 2κ .  The dipole moment of the 
donor molecule is labeled D, and the dipole moment of the acceptor molecule is 
labeled A.  R is the vector between the donor and acceptor fluorophores. 
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the diffusion FRET methodology to inspect the distance dependence of FRET at single 

molecule resolution [33].  During the past few years, spFRET has been used in a variety 

of biological applications including DNA [33],  RNA [44, 45], and protein folding [46-

48], enzyme reactions [49], peptide-calcium binding in solution [50] and receptor-ligand 

binding on cell surfaces [51], and signal transduction [52].  spFRET measurements can 

be used to probe not only average distances as in an ensemble experiment, but also to 

directly observe distributions and the time-evolution of conformational (distance) 

properties.   

Two expressions for the FRET efficiency E are important for single-molecule 

FRET measurements.  The first expression will be used to obtain E from fluorescence 

lifetime measurements.  The lifetime of the donor in the presence of FRET 

is ( ) 1
FRETd dk kτ −′ = + .  Using this with Eq. (2.4), we obtain the following expression for 

the FRET efficiency E in terms of measured fluorescence lifetimes. 

 1 d

d

E τ
τ
′

= −  (2.5) 

The second expression for E is developed for fluorescence intensity 

measurements.  Ignoring saturation effects, the measured fluorescence intensity in the 

donor channel D  is  

 ( )exc exc exc1D d d d D d a a D a a a DI I E d I Ed I dσ ϕ σ ϕ σ ϕ→ → →= − + +  (2.6) 

The measured fluorescence intensity in the acceptor channel A  is  

 ( )exc exc exc1A d d d A d a a A a a a AI I E d I Ed I dσ ϕ σ ϕ σ ϕ→ → →= − + +  (2.7) 

dσ and aσ  are the absorption cross-sections of the donor and acceptor, respectively, at 

the excitation wavelength, and excI  is the laser intensity.  dϕ and aϕ  are the quantum 
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efficiencies of the donor and acceptor, respectively.  d Dd → and d Ad →  are the detection 

efficiencies for donor fluorescence in the donor and acceptor channels, respectively.  

a Dd → and a Ad →  are the detection efficiencies for acceptor fluorescence in the donor and 

acceptor channels, respectively.  On the right hand side of Eqs. (2.6) and (2.7), the first 

term is the contribution from the donor, the second term is from the FRET sensitized 

emission of the acceptor, and the third term is from direct excitation of the acceptor.   The 

emission spectra of most organic fluorophores are asymmetric, with a long tail toward the 

red, but not toward the blue.  Because of this, the detection efficiency of the acceptor in a 

suitably chosen donor channel is typically negligible ( 0a Dd → ≈ ), whereas the detection 

efficiency of the donor in the acceptor channel ( d Ad → ) is not. In the discussion of the next 

sections, the direct excitation of the acceptor is neglected ( 0aσ = ) since the absorption of 

the acceptor used (Cy5) is small compared to that of the donor molecule (TMR).  Using 

these assumptions, Eqs. (2.6) and (2.7) can be rewritten,  

 
( )

1
1 D A D d A d D

E
I I I d dγ → →

=
+ −  

 (2.8) 

where a a A

d d D

d
d

ϕγ
ϕ

→

→

=  is a correction factor that contains components from detection 

efficiencies, and fluorescence quantum yields.  Hence, measurement of the ratio ( d aI I ) 

allows ratiometric determination of E in single-molecule experiments. 

2.1.2. Polarization anisotropy 

Polarization properties of the emitted fluorescence provide information about the 

reorientational properties of the fluorophore on the timescale of the fluorescence lifetime 
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[40].  For polarization anisotropy measurements, a laser polarized along the z axis excites 

the fluorophore.  The distribution over ( ),θ φ  ( 0θ = is the z axis) of dipole orientations 

excited by the laser is equal to ( ) 2cos , cos 3 2cos  cosP d dθ φ θ θ θ= .  After the 

excitation, the dipole orientations diffuse, and this distribution relaxes eventually to a 

uniform distribution, ( )cos , cos 1 2  cosP d dθ φ θ θ= .  Until the dipole orientation 

relaxes to the uniform distribution, the emission is on average polarized in the direction 

of the excitation polarization.  The anisotropy r  is a measure of how much of the emitted 

light is parallel to the excitation and how much is perpendicular:
2

I I
r

I I
⊥

⊥

−
=

+
.  There is a 

competition between the rate of fluorescence (given by the inverse of the fluorescence 

lifetime τ ) and rotational diffusion.  r can have values in the range 0  to 0.4  for a 

random initial distribution (0 for very fast diffusion and 0.4 for very slow diffusion 

compared to the lifetime).  Immobilized single molecules can have values from –0.5 to 

1.0.  The Perrin equation gives the value of anisotropy as a function of these 

variables: 0
rot1 6r D

r
τ= + .  0r is the “fundamental anisotropy”, which accounts for 

depolarization effects if the excitation and emission dipoles do not overlap.  If they 

overlap, then 0 0.4r = .  Time-resolved anisotropy measurements track the time scale of 

rotational diffusion for the molecules by measuring ( )r t , where t  is the time since an 

exciting laser pulse.   

For single-molecule measurements, the polarization anisotropy signal is obtained 

using a high numerical aperture (NA) microscope objective.  Polarization mixing occurs 

when using high NA objectives.  The cause of this effect can be seen in Fig. 2.3: high NA 
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objectives refract optical rays at high angles, causing significant z components for the 

polarization in the region near the focus.  Expressions for r have been developed that take 

into account this polarization mixing [53, 

54].  These are not discussed here, since 

this work focuses primarily on FRET 

experiments.  We point out however, that 

polarization anisotropy measurements 

performed on the donor and acceptor 

allow limits to be placed on the values 

for 2κ , improving confidence in distances 

extracted using FRET. 

Polarization anisotropy has been 

used extensively in both steady state and 

time-resolved formats in biological 

applications such as protein folding and 

drug-protein interactions [40].  At the 

single-molecule level [54] polarization 

properties have been used to distinguish 

components of mixtures [34], to measure 

changes in myosin light-chain orientation 

[55] and to observe the rotation of single F1-ATPase molecules [56].  A striking example 

is the F1-ATPase work by Adachi et. al.[57],  where the 120˚ rotation steps of the central 

γ-subunit during the hydrolysis of ATP were directly monitored in real-time.  They 

 
 
Fig. 2.3: Effects of high NA objective on 
polarization.  The objective and optical 
axis z are shown in gray.  Light rays with 
polarizations are shown in black. The ray 
marked A, has a steep angle with respect 
to z, which is allowed with high NA 
objectives.  A contributes a significant z 
component.  The ray marked B is 
paraxial, with a small z  component.  The 
ray marked C also has a large z 
component, but in the opposite direction. 
This polarization mixing occurs for both 
the excitation and detection light paths.  
For excitation, the z  component of A and 
C cancel at the center of the focus, but 
not elsewhere.
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achieved this by monitoring the fluorescence polarization properties of single dye 

molecules attached to the γ-subunit, and were able to demonstrate that the rotation rate 

was load independent.  Polarization methods might find their most powerful applications 

in monitoring the activity of single motor proteins as they move along DNA.    From a 

synthesis and data collection perspective, polarization measurements are advantageous 

over FRET, as they often require labeling with only a single dye, and suffer less from 

interpretation ambiguities.  However they do not provide distance information, and are 

best used when angular conformational changes are expected, such as in F1-ATPase. 
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2.2. Data acquisition 

Briefly, our experimental setup for the 

single-molecule experiments [33, 58] consists 

of laser excitation, and detection via an 

inverted confocal microscope (Zeiss Axiovert 

S100 TV) coupled to a high-sensitivity 

detection setup (see Fig. 2.4).  An air-cooled 

argon ion laser is used for the experiments in 

sections 2.3.3 and 2.4.2, while a mode-locked 

Titanium-Sapphire laser tuned to 1 µm, and 

doubled to 500 nm, is used for the 

demonstration experiments with time-

correlated single photon counting in section 

2.3.5 (laser excitation is shown in green in Fig. 2.4).  Later, a 532 nm pulsed diode laser 

is used for excitation for the CI2 experiments in section 2.4.3.  Upon introducing the laser 

into the microscope with a dichroic mirror (DM1), a tight focus is created by focusing the 

laser excitation through a high numerical aperture (NA 1.3) oil immersion objective 

(labeled “obj.” in Fig. 2.4).   In order to detect freely diffusing single molecules, the focal 

point is placed within the low concentration (<100pM) sample solution, and fluorescence 

emission is collected through the same objective and focused by a lens (L1) onto a 

pinhole (PH) to reject out-of-focus light.  The effective confocal volume is on the order 

 
 
Fig. 2.4: Experimental configuration for 
single-molecule FRET experiments.  An 
improved setup also splits the emission 
by polarization, leading to the use of 4 
APDs. 
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of 1 fl, which for a 100 pM solution corresponds to an occupancy of 0.06 molecules per 

detection volume.  The fluorescence is then split into two parts, via a dichroic mirror for 

FRET (DM2) and/or a polarizing beam splitter cube for polarization anisotropy, which 

are separately focused onto two avalanche photodiodes detectors (APDs, SPCM-AQR-

14, PerkinElmer), used for single photon counting.  The output pulses of the APDs are 

timed using a counter-timer board (PCI-6602, National Instruments).  The overall 

detection efficiency is estimated to be on the order of a few percent [58], and with typical 

dyes, peak count rates of 10KHz –1MHz are observed.  For FRET measurements, the dye 

pair is typically composed of TMR (donor, peak emission at 575 nm) and Cy5 (acceptor, 

peak emission at 670 nm); the large extinction coefficient of Cy5 (250,000) allows a 

good spectral separation while maintaining a large R0 of about 65Å.   

For TCSPC, a pulsed laser is used to excite a sample, and the time between a 

photon’s arrival and the next laser pulse is measured with sub-nanosecond accuracy. 

Histograms formed from binning the photons by this “microscopic” arrival time are fitted 

to obtain fluorescence lifetime of the fluorophore under investigation.  For ensemble 

measurements, one accumulates photons until the histogram is sufficiently accurate for 

the needed analysis.  In single-molecule measurements, the arrival time of the photon is 

also measured with respect to a global clock (100ns accuracy). This is called the 

“macroscopic” arrival time. The raw data is thus a list of photons, each tagged with the 

detector channel, the microscopic arrival time and the macroscopic arrival time. The 

relative timing of the photons is then known, allowing photon bursts from single 

molecules to be sifted from the data, which is the first step in solution-based single-

molecule data analysis.  
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For the TCSPC measurements described here, the APD signals are routed through 

a Time-to-Amplitude converter (TAC, EG&G Ortec 567) to an Analog-to-Digital 

converter board  (PCI-6111E, National Instruments) to measure the time between the 

laser pulse and the photon arrival time. A single commercial board can be used for the 

entire process (PicoQuant TimeHarp 100) or (Becker and Hickl SPC-630), which 

simultaneously measures the macroscopic timing of the photon (100ns time scale or 50ns 

time scale) and the microscopic arrival time with respect to the laser pulse (100ps time 

scale).  A different gating delay for each APD channel allows multiple channel detection 

with a single TAC or TimeHarp board.  A special signal router (HRT-82, Becker and 

Hickl) is used with the Becker and Hickl SPC-630. 

Four APDs are used for the experiments in section 2.4.3.  A linearly polarized 

excitation source is introduced, and the emission is split by polarization as well as by 

spectrum.  Therefore, there are channels for vertically and horizontally polarized TMR 

emission, as well as vertically and horizontally polarized Cy5 emission.   

The setup described so far measures the time intervals between photons to 10-100 

ns accuracy (depending on the computer card used).  When calculating the correlation 

function estimate, ( ) ( ) ( ) ( ) 2
G I t I t I tτ τ= + , used in FCS, this means that dynamics 

that are on a faster time scale cannot be measured.  To probe dynamics using correlation 

function estimates on a faster time scale, we use the Time-to-Amplitude Converter (TAC, 

EG&G Ortec 567) to measure the difference in photon arrival times to subnanosecond 

accuracy over time ranges of 100 ns – 1 µs.  Because the probability for receiving two 

photon within these time scales is small, the time interval statistics acquired in this 

manner are equivalent to correlation function estimates [59].  
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2.3. Single-molecule data analysis for diffusing species 

Every photon emitted by a fluorophore contains several types of information.  

Because of this, single-photon counting data generated in single-molecule experiments 

can be used to extract several physical parameters of the emitting system.  Each emitted 

photon can be characterized with respect to excited-state duration, polarization and 

spectral position, and the time delay from the previous emitted photon.  Integration over 

several such single-photon values can result in fluorescence intensity, lifetime, and 

related information.  The photon information can be used to generate ratiometric 

histograms, lifetime curves, correlation estimations and distributions from burst analysis, 

such as diffusion and intensity distributions.  A key point here is the ability to draw 

correlations between the results from these different kinds of analyses.  The groups of 

Keller and Seidel have pioneered such multi-dimensional analyses methods, mainly in 

order to minimize the error rates in identification of subpopulations during single-

molecule DNA sequencing and other proposed applications [34, 60].  In the current 

context, the methods discussed here offer the ability to separately monitor and carry out 

the above analyses on photons emitted by individual subpopulations in a mixture.  The 

following sections discuss a few illustrative examples of such analysis methods.  The 

focus of our work is on FRET, but these methods can be applied to polarization 

experiments as well. 
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2.3.1. Single-molecule ratiometric data analysis for diffusing species 

In 1999, two groups demonstrated the ability to make ratiometric measurements 

on freely diffusing molecules; our group used single pair fluorescence (or Förster) 

resonance energy transfer (spFRET) to identify and record changes in subpopulations in a 

mixture [33, 58], while the Seidel group used polarization anisotropy to increase the 

classification confidence for components in a mixture [34].  The ability to distinguish 

subpopulations and to classify collected photons or photon bursts according to these 

subpopulations, is a key feature of the single-molecule methodology for diffusing 

species. Due to their low intensities, single-molecule signals suffer from intrinsic 

fluctuations. Such fluctuations are amplified in diffusion measurements due to the 

variation in the excitation intensity experienced by the molecule as it diffuses through 

various regions of the focal volume.  The ratiometric method, in effect, provides a way to 

normalize the data with respect to many of these fluctuations.  This simplifies the data 

interpretation, and makes it possible to extract several parameters of interest with a 

minimum of complex modeling and data analysis.  Hence, ratiometric diffusion 

methodologies have been developed to study unperturbed biological molecules in the 

solution environment.  Using their ability to quickly resolve static structural distributions 

and subpopulations in mixtures, it is possible to measure submillisecond structural 

dynamics of individual subpopulations, measure slower changes in properties of 

subpopulations, and perform appropriate controls during the development of 

immobilization methods.  In the following sections, we describe the development of 

ratiometric diffusion single-molecule methods, with a focus on spFRET and its 

application to protein folding and polymer physics problems.   
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For ratiometric FRET experiments, the donor (TMR) is excited, and the donor and 

acceptor (Cy5) emission are separately and simultaneously detected. Pairs of data points 

corresponding to the number of detected photons in the two channels, Id and Ia, are 

recorded with integration times ranging from 0.2 – 1ms; this data can be used to plot 

FRET histograms (this is referred to as “point-wise analysis”) [33].  A better method is to 

record the time lag between successive photons with submicrosecond time-resolution, for 

each channel.   This permits the construction of FRET histograms, and also analysis by 

burst and correlation methods (see below).  Fig. 2.5A shows a time trace of dual detector 

(0.2 ms integration time) data for donor-acceptor labeled DNA molecules. Due to the low 

concentration, most of the points consist of background signal, resulting predominantly 

from Raman and Rayleigh scattering, while the occasional peaks correspond to single 

donor-acceptor labeled DNA molecules diffusing through the focal volume and emitting 

bursts of photons. The durations of these bursts (mean of about 200µs) are determined by 

Fig. 2.5:  (A) Dual channel time-trace showing acceptor (black, squares), and donor 
(red, circles) data, for DNA 7 (see text).  (B) FRET efficiency histogram generated 
from dual channel data, using a threshold T of 20 counts. 
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the molecular diffusion rate, while their amplitudes depend on several factors, such as the 

diffusion path of the molecule through the focal volume and the photophysical properties 

of the dyes. 

The time trace shows fluorescence bursts on both the donor and acceptor 

channels. Since direct excitation of the acceptor is negligible, and leakage of the donor 

emission into the acceptor channel is small, large bursts on the acceptor channel result 

from Cy5 emission due to energy transfer. A simple approach is used to extract FRET 

information from these photon bursts.  First, a threshold is used to discriminate dye signal 

from the background noise.  That is, pairs of data points from a time bin are accepted 

only when the sum of the signals (Ia + Id) is above a given threshold T.  The threshold 

value is chosen to effectively reject background while retaining as many points as 

possible.  We term this the “SUM” rejection criterion. For the accepted events, the FRET 

efficiencies are calculated according to Eq. (2.8), and collected in a histogram (Fig. 

2.5B). The correction factor γ  is estimated to be about 1 from surface-immobilized 

molecules [49], and is used for the data presented here. 

The above background rejection procedure is chosen to allow quick and simple 

processing of data while minimizing the bias of the thresholding criterion.  Defining a 

corrected acceptor intensity, A A D d A d DI I I d d→ →′ = − , Eq. (2.8) can be rewritten as:  

 A D AI I I Eγ′ ′+ =  (2.9) 

Substituting exca d a a AI E I dσ ϕ →′ = , we can write: 

 excA D A d a a AI I I E I dγ σ ϕ →′ ′+ = =  (2.10) 

showing that the sum A DI Iγ′ +  is independent of the FRET efficiency.  Our intention is to 

identify and study the properties of subpopulations or distributions of molecules based on 
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their FRET efficiencies.  Hence, using the “SUM” criterion is the simplest procedure for 

background rejection that provides representative data sampling without a bias with 

respect to E.    

Fig. 2.5B shows a representative FRET efficiency histogram from data for a 

double stranded DNA 7 molecule, where the donor and acceptor dyes were separated by 

7 base pairs. Two peaks are observed, one at efficiency greater than 0.95, and the other 

close to zero.  The high efficiency peak is consistent with expectations based on the 

calculated distance between the dyes.  The “zero peak” implies fluorescence bursts with 

emission from donor only.  It has contributions from several sources, including solvent 

impurities, molecules with donor dyes only, accelerated photobleaching of the acceptor 

during the single-molecule experiment and cis-isomers of the acceptor dye [61].  

Although the “zero peak” is problematic for analysis of histograms with low FRET peaks 

(E<0.3), it is less relevant for the E>0.4 portion of the histogram, where FRET peaks 

(distributions) may be analyzed to reveal their various moments, mean E, area and 

widths.  Although gaussian functions are often used for fitting the histograms, these are 

only appropriate between about 0.2 and 0.8 E, especially for the extraction of mean E, 

and width [58].  Outside this range, the non-symmetric shape of the distributions is fit 

better using beta functions.  Finally, these histograms may be used to identify and 

individually follow subpopulations of molecules based on differences in E. 

2.3.2.  Moments of peaks in the measured histograms 

While the moments extracted from the E histograms give approximate measures 

of populations, distance means and distributions, they are skewed due to contributions 

from other factors.  Next, we discuss the γ factor, shot-noise, orientational distributions 
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and fast distance-fluctuations, and some methods that may be used to quantify and 

separate out their contributions.  Given the uncertainties in the estimated E values, some 

authors refer to them as proximity ratios [44, 45, 62].   

The scaling factor γ can influence both the mean and width of E distributions.  

While this factor is hard to pin down accurately, lifetime based methods to measure E 

independently will prove very useful for this purpose.  Another major contributor to the 

widths is shot-noise.  The emissions of both fluorophores (Ia and Id) exhibit 

approximately Poisson distributions, with mean values that depend on the excitation 

intensity and the photophysical characteristics of the dyes [58].  For the observed low 

signals, relative variations play a significant role. This results in distributions in the 

computed E, which in turn results in lower limits for the widths of the E histogram peaks.   

To estimate this limit, a simple model was first used in which both emission 

channels Ia and Id are described by Poisson variables [58].  Their mean values are 

µa=Em.T and µd=(1-Em).T respectively, where Em is the mean transfer efficiency and T is 

the “SUM” threshold used in the analysis.  Since only signals above this threshold are 

processed, they have a smaller relative shot noise and hence, this calculation places an 

upper bound on the calculated values.  The formula reads [63]: 

 ( ) ( ) ( )
2 2

2 2 2
A A D D A A A D D D

A D

d dd I , I I I , I I
I I

µ µ µ µ
   ∂ ∂

∆ ≈ = = ∆ + = = ∆   ∂ ∂   
 (2.11) 

where d is the ratiometric observable, and for FRET efficiency, a a dd I I IE= = + .  Using 

this formula, the FRET width (standard deviation) is given by ( )m mE 1-E TE∆ = .  The 

solid lines in Fig. 2.6 display the upper bound estimates for T = 20, 50 and 100.  The 

shot-noise induced fluctuations strongly depend on the FRET mean value with a 
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maximum at E = 0.5, and clearly show 

the expected decrease with increase in 

signal intensity.   

More accurate models will 

include the effects of distributions of 

photon counts, and diffusion of the 

molecules in the focal volume [58].  In 

addition to shot-noise, distributions in 

E depend on distributions in the 

Förster radius R0 and, more 

interestingly, in the distance between the two dyes. The dominant factor in R0 

fluctuations is κ2, the orientational factor, which depends on the relative orientation of the 

two dipoles. A common assumption is that the two dyes are freely rotating on a time 

scale comparable to or faster than the fluorescence lifetime, and that κ2 can be 

dynamically averaged to a fixed value of 2/3 [40].  However, a combination of results 

from steady state polarization measurements and simulations shows that the presence of 

hindered rotation can cause both peak broadening and small shifts in mean E [46].  

Fluctuations or distributions of distances between the two dyes can give rise to 

shifts and distributions in E.  From a structural biology point of view, this is the most 

interesting case, as distance measurements are of interest in conformational fluctuations 

in proteins, in end-to-end fluctuations of polymers, and in protein folding.  Haas and co-

workers first developed ensemble time-resolved FRET techniques, data analysis, and 

modeling to extract such distributions from ensemble data [64].  Single molecule 

 

 
Fig. 2.6: Shot-noise width contributions to 
E histogram peaks, for T = 20, 50 and 100 
counts, calculated using the simple model 
described in the text. 
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methods might shed new insights in this context [65].  It is noted that fast fluctuations are 

averaged out within the measurement period and will not contribute to the observed 

widths, though they will shift the mean E to a higher value.  However, slower distance 

fluctuations from conformational or dye-biomolecule interactions can contribute 

significantly. 

Relative areas of subpopulations are particularly useful as they provide a measure 

for the occupation probabilities of a particular state by the molecular system; this ability 

is used to calculate protein denaturation curves in section 2.4 [46].  Relative areas can 

potentially be influenced by biased background rejection algorithms, and also by different 

photophysics, photochemistry or diffusion time between the different subpopulations.  

In summary, many contributions affect the parameters that are extracted from the 

E histograms.  While this can be problematic for accurate measurements, the studies we 

describe in the following sections demonstrate that it is nevertheless possible to extract 

new and meaningful information from these histograms.  These issues need to be 

investigated in greater detail using improved spacer constructs and more advanced data 

collection and analysis methods, where some of the above contributions can be ruled out 

or corrected for. 

2.3.3. Burst and fluctuation analysis methods 

Bursts of fluorescence photons in diffusion experiments may be identified and 

further analyzed either at the point-wise or the full burst levels.  For the point-wise 

analysis, the signal is merely integrated over a specified sampling interval.  Alternately, 

for the burst analysis, the data is first processed to identify groups of photons emitted by 

a specific molecule as it traverses the focal volume.  While the point-wise analysis is 
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simpler, and provides the possibility to control the averaging timescale, burst analysis can 

offer larger signal and consequently lower relative shot noise.  However, burst analysis 

can have the disadvantage of greater averaging over interconverting subpopulations 

during a burst, and these two analysis methods should be considered complementary.  

Identification of bursts, followed by analysis of subdivisions of these bursts is even more 

powerful, as it incorporates the advantages of both methods.  Fries et al have described 

the burst integrated fluorescence lifetime (BIFL) method, where they analyze 

distributions of bursts with respect to size, duration and lifetime, allowing them to resolve 

mixtures of dyes [34].   

Fluorescence autocorrelation analysis was introduced by Magde, Elson and Webb 

nearly three decades ago [66], and more recently received renewed attention by Eigen 

and Rigler as a method with broad implications for the modern biotechnology industry 

[21].  Although the autocorrelation function itself disregards a considerable amount of 

temporal information, FCS is a very powerful method that can provide information on 

fluorescence fluctuation timescales and amplitudes at equilibrium, over a wide timescale 

range [28].  Recently, two-color cross-correlation analysis has been used to study DNA 

cleavage [29], binding of DNA duplexes to transcription activator protein complexes 

[31], and detection of pathological prion protein aggregates [19, 20].    

A drawback of cross-correlation FCS, as conventionally practiced, is that it results 

in information averaged over individual subpopulations, making it hard to deconvolute 

out contributions from individual subpopulations of molecules.  The ratiometric single 

molecule approach allows us to add the capability to separate subpopulations to such 

correlation analyses.  By storing the arrival times of photons in a FRET experiment, a 
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cross correlation between donor and acceptor channels affords the ability to measure 

kinetics of processes that result in changes in E.  In contrast to the earlier two-color cross 

correlation, such fluctuations result in negative correlations, which allows them to be 

distinguished simply from other fluctuation processes that result in a positive correlation 

[50].   Furthermore, the same arrival time data may be used to plot a FRET histogram, 

followed by a correlation analysis of signals that correspond to subsets of this histogram.  

In this manner, fluctuations in distances shorter than the diffusion time can be monitored 

(see section 2.5).   

In addition to first order correlations such as the above, higher order correlations 

may be employed.  These afford the ability to investigate the contributions of non-

Markovian dynamics, as recently discussed in the analysis of data for flavoenzyme [67, 

68] and horseradish peroxidase catalysis [69, 70].  These authors interpret their 

observations as evidence for the presence of multiple conformational substates 

indistinguishable by their fluorescence.  Finally, burst and correlation analysis methods, 

in conjunction with ratiometric separation of subpopulations, might prove useful for 

detection of aggregation processes, such as between cell-surface receptors during 

signaling, between misfolded proteins resulting in disease, or proteins with DNA during 

cellular processes, where differences in molecular brightness and/or diffusion rates are 

expected. 

2.3.4.  Time-correlated single-photon counting 

Even more information can be extracted by collecting data in a time-correlated 

manner as described in section 2.2.  Single-molecule detection and analysis by this 

method has been used by several groups in a single channel detection mode [32, 60].   
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This method can be used to classify photon bursts according to lifetime, allowing the 

identification and quantification of components in a mixture with different lifetimes.  

This approach has specifically been developed as a tool for single-molecule DNA 

sequencing applications using a single excitation source and single detector.  Van Orden 

et al have shown that simultaneously measuring burst size and intraburst fluorescence 

lifetime increases the accuracy of identification of subpopulations in a mixture [60].  

Lamb et al have used the arrival time information in conjunction with FCS experiments 

to study heterogeneity of solutions [71].  The group of Seidel first used two-channel 

lifetime detection in combination with ratiometric polarization anisotropy measurements, 

in an approach termed the multidimensional BIFL technique [34].  Here, the authors 

recorded each photon using both the time-lag and time-correlated data collection 

approaches, and then analyzed the photons emitted during single bursts to classify 

molecules based on steady-state anisotropy, burst size, and time-resolved anisotropy 

decay.   

Using this lifetime capability, an interesting analysis may be carried out with 

ratiometric data collection.  Ratiometric diffusion histograms are first plotted to identify 

subpopulations, then the arrival-time histogram is plotted for all the photons 

corresponding to a particular subpopulation of molecules.  A simple example of such a 

separation is illustrated in Fig 2.7A, where a donor-acceptor DNA molecule is studied.  

Here, a FRET histogram is plotted in the inset, showing the separation of subpopulations 

corresponding to the “zero peak” (blue), and doubly labeled DNA molecules (red); the 

figure shows donor lifetime for these two subpopulations.  The high FRET component 

(red) clearly shows the accelerated decay due to energy transfer.  The acceptor lifetime 
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decay also showed a similar change.  While lifetime analysis may be carried out on 

individual bursts, the advantage of the current method is that it provides a larger number 

of photons and can be used for identifying multiple or distributed exponential decays.   

This is particularly interesting for the use of FRET measurements to look at 

subpopulations interconverting on the sub microsecond timescale, and fluctuations of 

proteins, DNA and other polymers, as first demonstrated by the pioneering ensemble 

work of Haas et.al [64].  End-to-end distance distributions or fluctuations in donor-

acceptor labeled polymers results in non-exponential decays of donor and acceptor 

fluorescence lifetime.  Several groups have used analyses of such non-exponential donor 

decays to identify peptide, protein, DNA and RNA conformational distributions [40].  

Since the analysis of such decays relies on complex models, it is of great utility to be able 

Fig. 2.7: (A) Donor channel lifetime decays for “low FRET” (blue) and “high FRET” 
(red) subpopulations in a mixture.  The inset shows a FRET histogram with the above 
subpopulations in blue and red respectively.  (B) The plot is a two-dimensional 
histogram, showing the number of bursts with a given donor lifetime and FRET 
efficiency.  Along the top axis is a projection of the histogram onto the E co-ordinate. 
The sample is a mixture of two doubly labeled FRET samples.  The high FRET 
sample is a dsDNA with 7 base pair separation between donor and acceptor, and the 
low FRET sample is a donor-acceptor end labeled (dT)40. 
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to first directly separate out lifetime components of subpopulations using the ratiometric 

single-molecule approach, followed by further analyses of these separate decays.  In 

particular, this approach is being pursued to investigate the unfolded state of CI2 in the 

region showing possible changes in the protein dimensions, and for the study of 

fluctuations in ss-DNA. 

Fig 2.7B demonstrates how lifetime information can be used in conjunction with 

ratiometric observables to facilitate separation of fluorescence bursts into subpopulations.  

The data are taken from a mixture of DNA molecules consisting of high FRET and lower 

FRET subpopulations.  The plot is a two-dimensional histogram, showing the number of 

fluorescence bursts with a given donor lifetime and FRET efficiency, E.  The projection 

along the top axis is the one-dimensional histogram of E.  For both graphs, the peak 

corresponding to the high FRET subpopulation is on the right.  The peak of the lower 

FRET subpopulation is in the middle, and the “zero FRET” peak is on the left. Because 

the donor lifetime decreases as E increases, the separation between subpopulations is 

improved when using the additional information from lifetime.  An extension of these 

lifetime methods, is to have four detection channels, each recording both time-lag and 

lifetime information.  This setup, which can monitor polarization properties of each 

FRET channel, is used in section 2.4.4.  
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2.4. Protein folding of Chymotrypsin Inhibitor 2 (CI2) 

We now discuss the application of single-molecule FRET methods to the protein 

folding of Chymotrypsin Inhibitor 2 (CI2) [46].  The folding mechanisms of proteins 

have been intensely studied using both experimental and theoretical methods.  However, 

since protein folding is extremely complex, no single observable or technique is 

sufficient to fully describe it.  Hence, new technologies have constantly been applied to 

the folding problem, providing new experimental observables and deeper insights into the 

problem.  Technical developments have recently facilitated crossing the fundamental 

threshold from ensemble to single-molecule studies, providing access to information 

unavailable from bulk studies.  Several important aspects of protein folding and dynamics 

are difficult or impossible to study using ensemble methods, due to the complexity of 

protein structures and the stochastic nature of these processes.  Key examples of this 

complexity include (1) the ensemble of unfolded protein molecules, consisting of a large 

number of nearly degenerate and rapidly inter-converting protein conformations [36, 37], 

(2) multiple local minima on a rugged energy landscape which can give rise to 

fluctuations and several conformational substates even for the native protein, and (3) 

ensembles of folding pathways and “transition states” for the folding reaction.  Hence, 

the dynamics of folding reactions are expected to be highly stochastic; such stochastic 

aspects are clearly best studied at single-molecule resolution.  Single-molecule methods 

are also useful to directly monitor static or dynamic distributions in the properties of 

individual sub-populations, at equilibrium in a mixture of species, and under non-
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equilibrium conditions.  Finally, from a theoretical standpoint, most calculations are 

carried out at the single-molecule level.  Hence, single-molecule experiments provide the 

most direct experimental benchmarks and tests for theory.  In particular, the dramatic 

increase during recent years of theoretical methods applied to the folding problem makes 

such single-molecule studies very attractive [72-77]. 

We use spFRET as a reaction coordinate to map the number of sub-populations in 

protein folding.  The idea is illustrated in Fig. 2.8.  An unfolded protein, shown to the left 

in Fig. 2.8, has a larger average distance between the donor and acceptor (and hence 

lower FRET efficiency) than a folded protein, shown to the right.  An intermediate would 

 
Fig 2.8: spFRET may be used as a reaction coordinate to map the sub-populations in 
protein folding.  To the left is a completely denatured protein with a relatively large 
distance between donor and acceptor, and hence low FRET efficiency.  To the right 
is the native structure, with a short distance between donor and acceptor, and hence 
high FRET efficiency.  In the middle is an intermediate with a corresponding 
intermediate distance and FRET efficiency. 
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typically have a distance and FRET efficiency somewhere in between the folded and 

unfolded proteins. 

2.4.1. Materials and methods for CI2 

2.4.1.1. Protein molecules 

The protein was synthesized using conformationally assisted ligation of two 

peptide fragments of CI2 [78].  Peptides corresponding to CI2(1-39) and CI2(40-64) were 

synthesized separately using manual solid phase peptide synthesis [79, 80];  the C-

terminal (1-39) fragment was synthesized on TAMPAL resin to afford a C-terminal 

thioester [81].   For donor-acceptor labeled protein, the N-terminal amine of the (1-39) 

piece was coupled with TAMRA-succinimide ester before cleavage from the resin.  The 

peptides were deprotected and cleaved from the resin using anhydrous HF, precipitated, 

dissolved in aqueous acetonitrile and lyophilized.  They were purified using reverse 

phase (C-18) HPLC and analyzed using Electrospray MS.  The above self-associating 

peptides of CI2 were ligated under folding conditions at room temperature, for 30 mins.  

The product CI2(1-64)T39D/M40C was purified using RP-C18 HPLC and analyzed by 

ESMS.  Both unlabeled and TMR-only labeled proteins were synthesized as described.  

Cy5 modified with a thiopyridyl-activated disulfide was used to label the protein by 

disulfide exchange with the cysteine thiol group at position 40.  A 5-fold excess of Cy5-

activated disulfide was used and the reaction allowed to proceed for 15 - 20 hours.  The 

labeled protein was purified using RP-C18 HPLC.  It was analyzed using ESMS, 

showing a single species (8383.2±0.5 a.m.u.), consistent with a site-specific 1:1 
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dye:protein reaction.  Both Cy5-only labeled and TMR-Cy5 labeled protein were 

synthesized in this manner. 

2.4.1.2. Protein denaturation studies 

One way to study protein folding is to add chemical denaturants that stabilize the 

denatured state and/or destabilize the native state.  As a function of denaturant 

concentration, the fraction of molecules in the native and denatured states can be 

monitored.  In low denaturant, the folded state has a lower free energy than the denatured 

state, and thus is more populated.  In high denaturant, the unfolded state has lower free 

energy, and is thus more populated.  In between these two extremes, there is a 

concentration where both states have the same free energy and both states are equally 

populated.  In this way, the stability and number of populated states of a protein can be 

extracted. 

All denaturation experiments were carried out under solution conditions similar to 

those used by Fersht and coworkers, except that a phosphate buffer (50mM, pH 6.3) was 

used instead of MES buffer, due to fluorescence background considerations.  Pierce 

guanidinium chloride (Sequanal grade) was found to be sufficiently background free for 

these experiments.  Tween-20 was used to passivate the glass surface of the sample cell, 

in order to minimize protein adsorption.  Single-molecule experiments were carried out at 

a series of denaturant concentrations.  Data were usually acquired for 5 minutes, and 

histograms were calculated and analyzed.  Generally, two or three data sets were acquired 

and analyzed at each denaturant concentration.  Ensemble fluorescence denaturation 

experiments were carried out using a SPEX Fluoromax-2 fluorescence spectrometer 

(JY/Horiba, NJ).  Here, FRET or tryptophan fluorescence data were acquired as a 
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function of denaturant concentration, and a two-state model was used to calculate the 

fraction of the folded state as a function of denaturant; plots of these data are shown in 

Fig. 2.12.  Sigmoidal fits to the denaturation curves (single-molecule and ensemble) 

resulted in the reported midpoints; errors include estimates from multiple experiments. 

2.4.2. Results and discussion using ratiometric analysis only 

2.4.2.1. Protein system 

FRET has been used as a tool 

to study biomolecule conformations 

and dynamics at the ensemble level for 

the last three decades.  The strong 

distance dependence (1/R6) of the 

FRET rate constant allows the 

measurement of distances on the 20-

80Å scale, between donor and acceptor labels on a biomolecule.  In the case of protein 

folding, FRET can provide distance information for pairs of points on the amino-acid 

chain as a function of folding, i.e., it can provide a reaction coordinate that affords a 

global view of the conformational distributions and dynamics of the protein as it folds.  

Recently, single-molecule FRET has been used to examine the folding and fluctuations of 

the surface immobilized peptide, GCN4 [47].  It is clear that surface interactions could 

have modified and broadened the distributions observed under these immobilized 

conditions, making the interpretation of the results and comparison to existing ensemble 

measurements more problematic.  RNA folding and protein fluctuations under surface 

Fig. 2.9: CI2 structure, showing dye 
attachment points, and destabilizing 
mutation. 
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immobilized conditions, and DNA hairpin folding in diffusion have also been recently 

reported [33, 44, 49].  In this work, we use diffusion single-pair FRET (sp-FRET) to 

examine the guanidinium chloride denaturation of freely diffusing chymotrypsin inhibitor 

2 (CI2, shown in Fig. 2.9), a well established model for protein folding studies. 

The protein CI2 was chosen for several reasons.  It has been extensively examined 

by Fersht and coworkers [82, 83], who provide a large amount of ensemble information 

with which to compare single-molecule results.  This protein has also been the subject of 

numerous theoretical studies [74-76, 84, 85].  The tertiary structure of CI2 contains the 

three basic units of protein structure: α-helix, β-sheet and loop elements (Fig. 2.9).  Wild-

type CI2 is very stable, showing a denaturing transition at about 4M guanidinium 

chloride, based on changes in tryptophan fluorescence.  Kinetic and equilibrium 

arguments have been used to support a two-state folding mechanism for the protein [86].  

The structure of the transition-state and the mechanism of folding have been probed using 

the protein engineering method [82].  Furthermore, the truncated form of CI2, used by the 

Fersht group and in this work, is small (64 amino acids), which makes it amenable to 

total- or semi-synthetic methodologies. 

Recently developed conformationally assisted “peptide ligation methodology” 

using C-α-thioester peptides [78, 87] is a very promising approach for making relatively 

small proteins, with multiple site-specific mutations, labels or reactive handles, and was 

used here.  Two fragments, CI2(1-39) and CI2(40-64) were synthesized separately by 

standard solid-phase peptide synthesis; TMR was site-specifically coupled to the N-

terminal amine of CI2(1-39),  followed by cleavage, deprotection, and purification.  The 

two fragments were then ligated under folding conditions, allowing a clean and rapid 
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ligation reaction, resulting in wt CI2(1-64) with T39D/M40C and N-terminal TMR 

substitutions.  We refer to this amino-acid sequence as pseudo wild-type CI2.  The 

second dye, Cy5, was coupled to the unique cysteine at position 40, affording site-

specifically donor-acceptor labeled protein, with a minimum of purification/separation 

steps.  The product was characterized using HPLC and mass-spectral analysis. 

2.4.2.2. Subpopulations of Pseudo wild-type and mutant CI2 

A denaturation curve is a plot of the fraction of a given state (e.g. the folded state) 

as a function of condition (denaturant concentration, temperature, pressure, etc.).  For a 

two-state system, the curve has a sigmoidal shape, and its midpoint corresponds to 

conditions under which the two states are equally populated; for pseudo wild-type CI2 

(versus guanidinium chloride concentration), this midpoint was found to be at 4M by 

ensemble methods [82, 86].  Using diffusion sp-FRET, we generated histograms of FRET 

efficiencies (E) for CI2 as a function of guanidinium chloride concentration.  Since they 

report on the inter-dye distance, such histograms represent the distribution of 

conformational states during folding which can serve as a reaction coordinate for the 

folding reaction.  Fig. 2.10A shows representative histograms for 3, 4 and 6M denaturant; 

these values were all chosen to be close to the ensemble denaturation midpoint.  Based on 

the ensemble data, most CI2 molecules should be folded, an equal fraction folded and 

unfolded, and most molecules unfolded respectively under these conditions.  Large 

changes are indeed observed between these three histograms.  All histograms showed a 

peak at around zero FRET efficiency, previously shown to arise in part from molecules 

containing fluorescent donor and photobleached acceptor [33].  Since these molecules do 
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not provide relevant FRET (distance) information, only the region above 0.4E is 

displayed, and the following discussion refers to peaks in this region. 

CI2 is believed to fold via a two-state mechanism based on ensemble 

measurements [86].  The sp-FRET histograms directly support such a mechanism.  At or 

below 3M guanidinium chloride, a peak at around 0.95 E is observed.  At high denaturant 

concentration (6M), only a peak at around 0.65 E is detected.  As intermediate denaturant 

concentrations are scanned, varying ratios of the two peaks are observed.  The properties 

of the lower efficiency peak change with denaturant concentration (vide infra).  The 

0.95E and the 0.65E peaks are respectively assigned to the folded and denatured states of 

the protein.  Note that single molecule studies confer the ability to examine particular 

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

3.5M guanidinium chloride

FRET Efficiency

Destabilized mutant

 

 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

150 3.5M guanidinium chloride

Pseudo wild-type

 

 

0.4 0.6 0.8 1.0
0

100

200

300

400

 

6M guanidinium
      chloride

N
um

be
r 

of
 E

ve
nt

s

FRET Efficiency

0.4 0.6 0.8 1.0
0

50

100

150

200

250 4M guanidinium
      chloride

0.4 0.6 0.8 1.0
0

50

100

150

200 3M guanidinium
      chloride

Denatured

Folded
A B

Fig. 2.10: (A) sp-FRET histograms of pwt CI2 at 3, 4, and 6M denaturant.  (B) sp-
FRET histograms showing comparison of pseudo-wt and mutant CI2 (K17G) at 3.5M 
denaturant.  Solid lines show gaussian fits to the peaks. 
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sub-populations of interest.  This advantage can be appreciated by comparing mean 

FRET efficiencies obtained from sp-FRET with the ensemble FRET measurements; the 

ensemble values are found to be significantly lower (by up to 0.2 E). This observation 

derives, at least in part, from molecules with non-fluorescent or photobleached acceptor.  

Since the steady-state ensemble numbers include a contribution from the “zero peak”, 

they are shifted towards lower FRET efficiency, skewing the true values. 

The histograms directly confirm the “two-state” nature of the CI2 folding 

transition.  The upper limit for the observation time per molecule in this experiment is 

about 1 ms due to the diffusion process and the data is acquired with a 0.2 ms integration-

time.  The observation of two sub-populations indicates that the interconversion of the 

two forms of the protein must occur on a time scale that is significantly slower than the 

integration-time.  This is consistent with the folding/unfolding kinetics slower than 

100ms observed in the transition region by ensemble measurements [86]. 

A mutant (pwt sequence with K17G substitution) with a significantly lower 

stability was also synthesized, and its single molecule folding properties were compared 

to those of the pseudo wild-type.  This helix destabilizing mutation (Fig. 2.9) has been 

shown to shift the guanidinium chloride denaturation midpoint to 2.8M denaturant [82].  

Hence, it is expected that at 3.5M denaturant, the observed fraction of the 0.95E 

subpopulation should be significantly reduced for the mutant relative to wild-type CI2.  

The sp-FRET histograms (Fig. 2.10B) show that the fraction of the folded form drops 

from about 0.5 for the wild-type to almost zero for the mutant.  Since the solution 

conditions are identical, this dramatic change must come from protein stability/structure 

related changes.  This observation strongly supports the assignment of the observed sub-
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populations to the native and denatured states of CI2. The properties of these sub-

populations (mean, width and area of the FRET peaks) contain information about the 

protein folding reaction, as discussed in the following sections. 

2.4.2.3. Inter-dye distances for the native and denatured states 

Average inter-dye distances in the folded and denatured forms of the protein can 

be extracted from the mean FRET efficiencies, assuming freely rotating dyes (κ2=2/3) 

and a Förster radius of R0 = 53Å.  Since the single-molecule E values exclude non-FRET 

contributions (vide infra), they are used in the discussion below.  A value for the mean 

distance between the two dyes of 31Å is calculated for the folded form, consistent with a 

number of about 32Å estimated from the known crystal structure of the protein [88], and 

allowing a reasonable additional 7Å due the size of the dye/tethers, assuming a right-

angled geometry on average.  For the unfolded form, the mean calculated distance (from 

mean E, using the same assumptions for κ2 and R0) is 48Å.  However, changes in the 

orientation factor κ2 could result in significant changes in R0 and hence skew the 

calculated value of R (see equation (1)).  A discussion is presented below describing 

estimation of such changes. 

In order to compute the effects of κ2, it is assumed that the orientations of the 

donor and acceptor fluorophores are random on the time scale of the measurement (100 

µs to 1ms).  This is a reasonable assumption for the denatured sub-population, since it is 

rapidly interconverting between conformations and the donor and acceptor are separated 

by a relatively long distance of 40 amino acids [89].  A second assumption is that the 

large fluctuations of the peptide chain occur on a longer time scale than the fluorescence 
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lifetime (few ns), allowing the inter-dye distance to be held constant while analyzing the 

effects of κ2.   

Ensemble polarization anisotropy (r) measurements were performed on separate 

proteins labeled with TMR only (N-terminus) and Cy5 only (cysteine 40).  It was found 

that r decreased for TMR (donor) from about 0.09 to 0.07 over a limited range of 3M to 

4.5M denaturant, with a much smaller increase by 0.005 to 0.0075 from 4.5M to 6M 

denaturant.  For Cy5 (acceptor), r stayed constant at about 0.2 over this range. The 

relatively high anisotropy values indicate that either one or both of the following are true: 

(1) the fluorophores did not have isotropic freedom of motion, or (2) the fluorophores’ 

rotational diffusion was on the same time scale as the fluorescence lifetime.  

The first possibility was investigated by extending the work of Dale and Eisinger 

[39].  An analytical model was developed to describe the fluorophores as rapidly rotating 

dipoles within an axi-symmetric distribution (a cone), and the cones slowly (compared to 

donor fluorescence lifetime) and randomly reorienting themselves.   

For the second possibility, it was necessary to simulate the rotational diffusion 

directly.  It was assumed that the fluorophores had isotropic freedom, but that the 

rotational diffusion was slow enough to obtain the observed anisotropy.  The simulations 

were performed by a random walk on a sphere, and were calibrated using the Perrin 

equation (see appendix 2.A) [40].  In both cases, a decrease in the mean E of 0.03 to 0.05 

was found on going from a situation with freely rotating dyes to one with the 

experimental polarization anisotropy values.  Recalculation of the inter-dye distance for 

the denatured sub-population which included this correction gave R = 45Å. 
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The calculated distances for the denatured state compare reasonably with 

theoretical predictions of Miller and Goebel, who determined an r.m.s. distance of about 

50Å for the end-to-end distance of a 40 amino-acid random coil, based on Rotational 

Isomeric State model calculations [90].  However, fast distance fluctuations between the 

donor and acceptor (on the time-scale of the donor fluorescence lifetime) will result in a 

higher average observed transfer efficiency (for the same instantaneous distance 

distribution) and a corresponding lower average distance [65].  Furthermore, other factors 

such as the particular sequence, dye-protein interactions, the detection efficiency, 

photobleaching, excluded volume and solvent interactions could also alter the observed 

FRET efficiencies; some of these factors are discussed in more detail in the following 

section. 

2.4.2.4. Shifts in average FRET efficiency of the denatured state 

It is found that the mean FRET efficiency of the denatured sub-population for the 

pseudo wild-type protein shifts as a function of denaturant concentration, while the 

corresponding values for the folded sub-population are fairly constant.  Fig. 2.11A shows 

that the denatured E peak shifts from 0.68±0.02 in 4M denaturant to 0.63±0.01 in 6M 

denaturant.  Error bars are standard deviations from multiple measurements.  Although 

the precision of the data is poor and an attempt to fit it to a model will be at best 

questionable, we might be observing a sigmoidal transition in mean E.  This transition is 

centered at about 4.4M denaturant, and could indicate an increase in protein dimensions 

with increase in denaturant concentration.  Such a ‘swelling’ of the denatured protein can 

occur due to a reduction in persistent specific structure or an increase in the “solubility” 

of the protein random-coil [36, 91-93].  It is noted that this shift occurs over a limited 
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range of denaturant concentration (4M to 5M), close to the major unfolding transition 

region at 4M denaturant (see the denaturation curves in Fig. 2.12 below) and would be at 

least partly hidden (or convoluted) in any ensemble experiment. 

However, it is emphasized that several other factors can contribute to this shift 

and must be taken into account.  Although most of the observed E shift seems to occur 

within a narrow range of 0.5M in denaturant concentration, an upper bound on changes 

due to other factors is calculated by comparing results at 4M and 6M denaturant, given 

the poor precision of the data in Fig. 2.11.  Changes in observed E, (going from 4M to 

6M denaturant) can be related to non-distance related changes (i.e., R remains constant) 

as follows: 
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Fig. 2.11: (A) Shift in the mean E of the denatured sub-population for pwt CI2.  The 
error bars are single standard deviations.  The solid line is a guide to the eye.  (B) 
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solid lines represent a smoothing of the data, and are meant as a guide to the eye. 



 

44

 ( )
( )

( )
( )

4 2
6 4

4 2
4 6

1 1
1 1

aM M

M a M

JnE
E Jn

κ

κ

−

−

Φ −
= − Φ 

 (2.12) 

where J is the overlap integral, n is the refractive index, κ2 is the orientation factor, and 

Φa is the acceptor fluorescence quantum yield.  The photophysical properties of the dyes 

(donor and acceptor absorption and emission) were measured in ensemble at 4 and 6M 

denaturant in order to quantify changes in κ2, J and φa, and the refractive index change 

was obtained from the literature [94].  The small observed increase in r was translated 

into a change in κ2 using the approaches discussed in the previous section, resulting in a 

decrease of 0.003 E units.  Combining these numbers, we estimate that the average E 

should be reduced due to non-distance effects from 0.68 to 0.65±0.04.  It is therefore 

concluded that together with the relatively large error bars, the non-distance effects could 

explain the observed shifts and cannot be ruled out.   

In addition to photophysical effects, an increase in solvent viscosity with 

increasing denaturant concentration will lead to an increase in time-scales of the dipoles’ 

rotational diffusion and the structural fluctuations of the denatured, random coil, amino-

acid chain. The slowing-down of these fluctuations will result in a decrease in the 

average E.  However, we estimate that the contribution of increased viscosity to the 

observed changes in E is small. Viscosity changes with denaturant concentration will 

continue above 5M, while the observed E change occurs over a very narrow (4M to 5M) 

concentration range (the E change going from 4M to 5M is 0.06 while it is <0.01 going 

from 5M to 6M). 
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2.4.2.5. Distance distributions, widths, and potential functions 

sp-FRET histograms give direct access to the E distribution width, thereby 

providing information on distributions of inter-dye distances. Distance-related 

broadening of the FRET peaks could occur due to relatively slow (compared to the 

binning time-scale) interconversion between conformers in the denatured state, especially 

at lower concentrations of denaturant, and proline isomerization might also play a 

significant role.  However, the distributions are contaminated by several other factors, 

most significantly shot-noise, and one must exercise great caution in interpreting the 

width of the FRET distribution.   

For the sake of the following discussion, we ignore these complications and 

assume contributions from distance only (admittedly, a gross assumption).  Under such 

an assumption, the E histograms can be directly translated into potential functions versus 

inter-dye distance.  This is done by firstly converting E distributions into distance 

distributions assuming κ2=2/3 (R0 = 53Å).  The distance distribution is then converted 

into a potential energy (free energy) function (Fig. 2.11B) using the Boltzmann weight 

Pi=exp(-∆G/RT), [47] where Pi is the probability of populating bin i at distance Ri, 

obtained from the distance histogram.  The main features to be noted are changes in the 

position and number of minima as a function of guanidinium chloride; the appearance of 

the double well at 4M guanidinium chloride reflects the two-state folding of this protein.  

Since non-distance factors cause broadening in the histograms, the depicted potential 

functions show upper limits for the widths and lower limits for the depths of the wells.  

This is consistent with the measured activation barrier of about 19.5 kcal/mol for 

folding/unfolding of wt CI2 at 4M denaturant [95].  Note that the minimum for the 
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denatured state represents a significant entropic contribution.  Furthermore, the limited 

time resolution (200 µs) prohibits the observation of transiently populated states such as 

rapidly interconverting conformations of the denatured state, under these conditions. 

Shot-noise dominates the distribution width and therefore the obtainable sub-

population resolving power [33, 58].  A limited number of photon counts (up to about 

100) are obtained from each molecule as it passes through the detection volume.  These 

counts are usually distributed among 3 – 5 time bins (in this paper, all photon counting 

data were binned to 200 µs, with a rejection threshold of 30 counts per bin).  For a 

sample with static heterogeneity (disorder), a reduction in shot-noise broadening could be 

achieved by respective binning of all donor and acceptor photons collected from each 

molecule (burst integrated analysis) [96].  However, using a detailed comparison between 

point-wise (200 µs bins) time analysis and burst integrated analysis for various threshold 

values, we find that 200µs time bins provided the best peak separation.  Burst integrated 

analysis was able to match this performance, but did not exceed it, due to photobleaching 

considerations.  Futhermore, shot-noise broadening places a limit of 10-50 µs on the 

time-resolution achievable for identifying interconverting conformations by sp-FRET 

histograms, using the current dye-pair. 

It is relevant to consider here the implications of the ergodic hypothesis, which 

equates the long-time average behavior of a single molecule with that of the 

instantaneous average over an ensemble.  This is true only if the population of molecules 

is homogeneous on the single-molecule averaging time-scale, which has important 

consequences for measurements with limited sampling, as is typical for single-molecule 

measurements.  If a molecule does not adequately sample all of its conformational space 
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within the measurement time (for example, due to photobleaching), it will be more 

representative to rapidly acquire small amounts of data on many single molecules 

(diffusion or flow methods) rather than to collect a larger amount of data on a small 

number of molecules.  In this respect, the diffusion sp-FRET method offers important 

information complementary to that obtained from FRET time trajectories acquired on 

single immobilized molecules. 

2.4.2.6. Denaturation curves extracted from FRET distributions 

Fig. 2.12 shows a comparison of denaturation curves from ensemble and single-

molecule experiments for pseudo wild-type CI2, showing the cooperative, two-state 

folding/unfolding transitions.  The single-molecule denaturation curves were directly 

extracted from the sp-FRET histograms.  Here, in marked contrast to the procedure used 

in ensemble measurements, the fraction of the protein in the folded form was directly 

calculated as the ratio of the area of the 0.95 E peak to the sum of the areas of the 0.95 

and the 0.65 E peaks; a transition midpoint of 3.7±0.1M denaturant is observed for the 

pseudo wild-type protein.  This is in good agreement with our ensemble FRET 

measurements on the donor-acceptor labeled protein (midpoint = 3.8±0.2M denaturant) 

and ensemble denaturation using tryptophan (Trp) fluorescence for the unlabeled protein 

(midpoint = 3.9±0.2M denaturant).  The ensemble midpoint from the tryptophan 

fluorescence experiments of Fersht for wild-type CI2 is 4.0M denaturant [82].    

Although, the midpoints for the dye labeled and unlabeled protein are within 

experimental error of each other, there might be a small decrease in protein stability due 

to attachment of the dyes.  Several other factors could affect the position of the single-

molecule midpoint, such as different photophysics, photochemistry or diffusion time 
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between the two forms of the protein.  However, the present analysis results in numbers 

that are in good agreement with ensemble data, showing that the single-molecule method 

is reliable, and that dye attachment has not seriously compromised protein stability.  Fig. 

2.12 shows a comparison of the single-molecule denaturation curve for the pseudo wild-

type and K17G mutant protein, clearly showing the destabilizing effect of the mutation.  

The mutant yields a midpoint of 2.5M denaturant, again comparing reasonably well with 

the ensemble FRET value of 2.65M and ensemble Trp value (2.95M, unlabeled) 

measured here, and the literature Trp value of 2.8M for CI2 K17G [82].    

In equilibrium ensemble 

experiments, direct information on 

the fraction of the protein in a 

particular state is not available since 

only average properties are 

measured.  Instead, a model and 

extrapolation dependent analysis 

must be used to calculate such 

fractions.  This analysis can 

sometimes be problematic.  For 

example, changes in the value of the 

observable for a given state as a 

function of condition (e.g., the shifts 

in E peak position v/s denaturant 

observed in this work) are often corrected for by extrapolating from conditions where 
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Fig. 2.12: Ensemble and single molecule 
denaturation curves for pwt and mutant CI2.  
Legend – symbols show data, lines show 
sigmoidal fits.  Pwt CI2: ensemble Trp (O, —), 
ensemble FRET (□, ----), sp-FRET (×, ….);  
Mutant CI2 sp-FRET (∇, .-.-). 
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only ‘one state’ exists.  Non-trivial changes in the observable, especially in the transition 

region, can produce significant question marks in interpretation, as pointed out by Dill 

and Shortle [36].  Since single-molecule methods can directly follow changes in sub-

populations (individual states or ensembles), a more accurate representation of the 

process is obtained.  Evidently, the effects discussed here will be much more pronounced 

in situations where a large non-linear change in a property is observed, or when the 

folding mechanism is complex, involving additional steps. 

2.4.2.7. Conclusions – single-molecule ratiometric studies of CI2 

We have described the use of diffusion ratiometric sp-FRET methodology to the 

study of protein unfolding at single molecule resolution.  Analysis of the folded and 

unfolded sub-populations of CI2 during guanidinium chloride denaturation provides the 

first single-molecule denaturation curves for a single-domain protein, and changes in 

protein stability due to mutation are observed using this methodology.  Comparison of the 

single-molecule denaturation curves with those from bulk measurements shows that the 

sp-FRET method is reliable for studying protein folding.  In short, this work validates the 

diffusion sp-FRET methodology as a valuable tool in such studies.  Such a validation 

opens up possibilities for future studies on novel and more complex systems, paving the 

way for exploration and discovery of new folding phenomena by single molecule 

spectroscopy.   

Improvements in dye-pairs, single-molecule data acquisition, data analysis and 

surface/gel immobilization methods will be crucial to fully exploit this technique.  Issues 

such as the influence of dyes on the folding reaction and the contribution of dye 

photophysics to the observed FRET changes must also be addressed in detail.  
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Immobilization of molecules can afford long time-trajectories and more detailed 

information, especially under non-equilibrium conditions. However, such immobilization 

will generally change the static and dynamic distributions of molecular conformations 

due to variations in the protein energy landscape induced by the local environment.  The 

diffusion methodology presented here can be used to generate benchmark single-

molecule data and characterize the unperturbed folding potentials, which will be crucial 

for comparison during the optimization of surface chemistries and immobilization 

methods.  

 Since multiple factors (protein structure, solvent viscosity, dye solvation, etc.) 

contribute to changes in dye and FRET properties, it is important to deconvolute the 

variations in these properties for a particular sub-population (denatured state in this work) 

of protein molecules.  Control experiments should ideally be carried out at single 

molecule resolution, on individual sub-populations of molecules.  Further, simultaneous 

intensity, lifetime and polarization anisotropy measurements will help to identify, 

quantify and separate-out contributions from κ2 and from dynamic distance fluctuations.  

Here, the development of a detection system with four time-correlated single-photon 

counting Avalanche photodiodes, auto- and cross-correlation methods, and the 

observation of long time-trajectories of single immobilized molecules will be essential in 

future work to further clarify these complicated issues. 

2.4.3. Current work - CI2 using lifetime, Burst and fluctuation analysis methods 

After validating the single molecule FRET method for use in protein folding, 

more interesting questions can be asked using single molecule methods.  Some of these 

questions are posed in this section.  The two universal features of all protein folding 
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reactions are (i) the collapse of the polypeptide chain from its expanded denatured 

structure to a more compact structure, and (ii) the formation of the specific native 

(secondary or tertiary) structure.  These features are referred to respectively as 

“polypeptide collapse” and “specific structure formation”.  The polypeptide collapse is an 

example of a general feature of polymer chains in solvents that favor phase separation of 

the polymer from the solvent over polymer solvation (“poor” solvents), and is expected to 

be in the sub-millisecond time scale.  Tertiary structure formation typically occurs at 

longer time scales, but secondary structure can form at similar time scales to the 

polypeptide collapse.  In this context, we are addressing several key questions concerning 

the folding mechanism of simple folding units or “foldons”:  

(i) what are the general protein structural features, (amino acid sequence, topology) 

that govern the kinetics of a fast  polypeptide collapse? 

(ii) how do solvent friction and nanosecond timescale fluctuations affect these 

kinetics? 

(iii) do the collapse and secondary native structure formation occur sequentially, or 

are they coupled to each other?  

(iv) what structural and environmental features contribute to this coupling? 

We have been pursuing the question of whether the fast collapse intermediate 

detected in several proteins is a general feature in protein folding.   There has not been an 

intermediate detected in Chymotrypsin Inhibitor 2, but we had previously measured a 

possible contraction of the unfolded state upon lowering the denaturant concentration, 

which may be related to a collapse of the polypeptide chain. 
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2.4.3.1. Development of single-molecule methods for observation of fast events in 

protein folding 

Fast events in protein folding are attributed to the non-specific collapse of the 

polypeptide chain or to the formation of secondary structure.  Any such changes into 

more compact unfolded or partially folded states should be found both in kinetic 

experiments (through intermediates formed at short time scales) and in equilibrium 

experiments (through detection of additional subpopulations or changes in the unfolded 

state).  To facilitate the detection of fast events in protein folding, we have extended our 

single-pair Fluorescence Resonance Energy Transfer (spFRET) method for equilibrium 

diffusion studies to include fluorescence lifetime and polarization information.  Four 

detection channels are used, with the fluorescence emission split into donor and acceptor 

spectral regions as well as parallel and perpendicular polarizations.  We use time-

correlated single photon counting (TCSPC) to obtain fluorescence lifetime information, 

which provides a second, robust measurement of FRET efficiency (which is related to the 

distance between the donor and the acceptor), improving our ability to separate, identify, 

and investigate subpopulations. As mentioned previously, TCSPC also permits the 

observation of dynamic disorder of an individual subpopulation, manifested as a multi-

exponential donor lifetime. The multi-exponential lifetime of the donor can be used to 

extract distance distributions that change on the 1ns-100µs time-scales.  Measurement of 

the emission polarization allows us to provide limits on 2κ  for each subpopulation in 

solution, giving a more robust estimate of distances using FRET.     

Upon sifting photon bursts from the data, the next task is to calculate the various 

quantities of interest from these bursts.  Simple statistics include the number of photons 
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in each detector channel and the duration of the burst.  E can be calculated from the 

intensity of the donor channel DI  and acceptor channel AI , the background levels, and the 

factor γ (which corrects for differences in quantum yield and detection 

efficiency): ( )1 1 D AE I Iγ= + .  TCSPC allows an independent estimation of E from the 

change in donor lifetime.  In the absence of the acceptor, the donor has an intrinsic 

lifetime Dτ .  When present, the 

acceptor quenches the fluorescence of 

the donor, thus reducing the lifetime 

to Dτ ′ .  The FRET efficiency E can be 

calculated from Eq. (2.5)

, 1 D DE τ τ′= − .  The fluorescence-

lifetime method of calculating E is 

advantageous because it does not 

suffer from uncertainty in the factor γ 

used in the expression for intensity 

measurements.  Fig. 2.13 shows a two-dimensional histogram showing the determination 

of E using both calculations simultaneously in a single sample of TMR- and Cy5-labeled 

CI2 near the midpoint of GuHCl denaturation (4M).  Three species are present: the folded 

molecules are on the upper right, the unfolded molecules are in the middle, and the 

molecules with photobleached Cy5 are on the lower left.  In order to have the E values 

from both methods match, the factor γ was set to 1.2 (This is different from the value 

used in earlier studies due to changes in the bandpass filters used).  Such a histogram has 

a better resolving power compared with the 1D histogram. 

 
Fig. 2.13: Two-dimensional histogram of 
photon bursts detected from single 
molecules of the protein CI2 in 4M GuHCl 
(near the midpoint of the denaturation 
curve).   
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If a fast initial collapse exists for CI2 or any other protein, then most likely there 

is a change in the distance distribution of the unfolded proteins when going from high 

denaturant to low denaturant.  This makes another benefit of using TCSPC perhaps even 

more interesting than the increased subpopulation resolution.  As described in section 

2.3.4, fluorescence lifetime data on FRET systems can be analyzed to investigate distance 

distributions as manifested by multi-exponential decays; if the distance between donor 

and acceptor changes on a time scale longer than the intrinsic lifetime of the donor Dτ , 

then many different values for the donor lifetime in the presence of the acceptor Dτ ′  are 

found, producing multi-exponential fluorescence decays.  If these distance changes occur 

on a time scale longer than the diffusion time across the detection volume, then these 

subpopulations can be separated by looking at the fret efficiency E of the photon bursts 

(see for example Fig. 2.13, which separates the folded and unfolded subpopulations of 

CI2).   

At shorter time scales, this is not 

possible, but the presence of distance 

distributions can be inferred through 

detection of multi-exponential 

fluorescence decays. The number of 

photons obtained from a single molecule 

is not sufficient to provide the detection 

of multi-exponential decays.   However, 

upon separating the fluorescence bursts 

into subpopulations (for example the 

 
Fig 2.14: Fluorescence lifetime 
histograms for the three subpopulations 
in Fig. 2.13.  All of the photons from 
each subpopulation are summed to obtain 
these histograms.  
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folded and unfolded states of CI2), the photons that come from different subpopulations 

are also separated.  All of the photons of a particular subpopulation can be summed and 

plotted in a fluorescence lifetime histogram. This capability is demonstrated for CI2 in 

Fig. 2.14, which shows the fluorescence lifetime histograms obtained for each of the 

subpopulations found in Fig. 2.13.  The lifetime of TMR for the folded molecules (green) 

is extremely short, indicating high FRET efficiency E.  The lifetime of the unfolded 

molecules (red) is longer, and the lifetime of the TMR only molecules (black) is the 

known lifetime (3.2 ns).     

Fig. 2.15 compares the lifetime 

histograms for the unfolded 

subpopulation of CI2 in 4M GuHCl for 

the emission polarizations parallel and 

perpendicular to the excitation 

polarization.  Note that the emission is 

higher at short lifetimes for the parallel 

polarization, clearly indicating rotational 

diffusion of TMR on the subnanosecond 

time scale (multiple exponentials due to 

distance changes would be the same for both polarizations). 

Fig. 2.16 shows a single- and two-exponential fit to the fluorescence lifetime 

histogram of the unfolded subpopulations in 4 M GuHCl, taking into account the 

instrument response function.  This histogram is clearly not mono-exponential.  However, 

the short component detected is primarily due to rotational diffusion of TMR.  Other 

Fig 2.15: Comparison of the TMR lifetime 
histograms for the detection channels with 
polarizations parallel and perpendicular to 
the excitation polarization, summed over 
the unfolded subpopulation 
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exponents due to distance fluctuations are also likely present, but they produce more 

subtle changes, and need to be verified carefully.  A further complication is that the 

separation into photons from different 

subpopulations is not perfect.  Photons from 

different sub-populations and background 

contribute to the signal.   

Improved characterization of these 

contributions can be achieved through an 

ongoing development of theoretical 

descriptions.  A theoretical description of 

the spFRET experiment that includes 

fluorophore photophysics, translational diffusion of molecules in the confocal detection 

volume, and internal dynamics of the protein is necessary to adequately understand the 

data resulting from the experiments discussed in the previous section.  We are combining 

photophysical simulations of FRET with Brownian dynamics simulations of translational 

diffusion and protein chain dynamics.  Photophysical simulations of FRET and 

simulations including translational diffusion have been completed separately.  By 

combining the different compoments, we will create a tool that will allow us to answer 

several outstanding questions about the application of spFRET to the protein folding 

problem.     

 
Fig 2.16: One- and two-exponential fits 
of the TMR lifetime histogram summed 
over the unfolded subpopulation, taking 
into account the instrument response 
function.   



 

57

 

2.5. Single-stranded DNA as a polymer 

Using single-stranded DNA (ssDNA) as a model polymer system, spFRET was 

used to study polyelectrolyte chain distributions, dynamics, and scaling properties in the 

short chain regime. There are several outstanding fundamental questions regarding 

polyelectrolytes in solution, especially due to the complexity resulting from Coulomb 

interactions [97, 98].  Single-molecule studies on relatively isolated polyelectrolytes 

could help answer these questions.  In order to study scaling issues in this length regime, 

a series of short poly-dT oligonucleotides ((dT)15, (dT)20, (dT)30, (dT)40, and (dT)50), end 

labeled with donor and acceptor dyes were synthesized.  Poly-dT sequences were chosen 

to minimize specific interactions between residues in the chain for this first set of 

experiments, and lengths were chosen by considering isomeric state simulations (RIS) 

based on the model of Yevich and Olson [99].   

Fig 2.17A shows the characteristic ratio for ssDNA as a function of length in 

bases.  The characteristic ratio provides a measure of the polymer stiffness.  The points 

are averages from simulations based on the rotational isomeric model, while the line is a 

fit of this simulation data to the wormlike chain model. This model assumes a continuum 

form for the polymer chain, with a certain amount of rigidity.  The fit gives a persistence 

length of 15Å for these idealized conditions, which is within the range of recent 

experimental estimates [100, 101].  An important point to note here is that although Cn 

eventually levels out for ssDNA with N>100, it has a strong, non-linear dependence for 

shorter lengths. 
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Fig. 2.17B shows E histograms for (dT)20 as a function of salt concentration, 

showing the collapse of the DNA molecule at higher concentrations where electrostatic 

screening between the DNA backbone negative charges becomes more effective.  Fits to 

the histograms allow the calculation of modified characteristic ratios (<R2>/N), which are 

shown in Fig. 2.17C as a function of length, for several salt concentrations.  The 

downward slope in 100mM and 1M salt means that the size of the ssDNAs increase more 

slowly than one would expect for a gaussian chain.  This could indicate poor solvent 
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Fig. 2.17: (A) Plot of characteristic ratio versus number of bases.  Symbols show 
results of RIS simulations, while the solid line shows a fit to a wormlike chain model.  
(B) FRET histograms for (dT)20 as a function of salt concentration. The insets show 
highly simplified cartoons of ss-DNA at low (expanded) and high (collapsed) salt.  
Blue dots depict DNA negative charges and red the sodium counterions.  (C) Modified 
characteristic ratio (see text) as a function of number of bases for different salt 
concentrations. 
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conditions and a collapsed structure for high salt.  Several corrections must be included to 

improve the accuracy of the above results - these issues are under current investigation.  

Thus, the spFRET method allows measurement of polymer end-to-end distances at low 

concentrations, which minimizes any intermolecular interaction between strands.  

Furthermore, it provides a simple test for heterogeneity in the sample due to such 

aggregation effects.  Most interestingly, the lifetime methods described earlier are 

currently being used to investigate the distance distributions and fluctuations timescales 

as a function of length scaling and solution conditions in this short-length chain regime.  

These experiments will be extended to study sequence dependence of these distance and 

interaction properties, which are of interest in several biological systems [100, 102].   

Fluctuations in distance 

between two sites of a molecule can 

occur over many time scales.  

Random polymer chain fluctuations 

can occur at fast time scales, on the 

order of 10-100ns (see for example 

the Rouse and Zimm models in Doi 

and Edwards [103]).  Measurement 

of these time scales is possible using 

FRET [65].  By using the Time to 

Amplitude Converter described at the end of section 2.2, we measured the time intervals 

between successive photons from Cy5 in the TMR- and Cy5-labeled ssDNA, (dT)30.  Fig. 

2.18 shows the resulting autocorrelation function with 5 ns time resolution.  The sharp 

Fig. 2.18: Distribution of time intervals 
between successive Cy5 photons or TMR- 
and Cy5- labeled ssDNA, (dT)30.  The red 
and green lines are linear fits to the data, 
starting a 0 time delay. 
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dip in the center in due to antibunching of the Cy5 photons.  Triplet state-induced 

fluctuations on the µs time scale produce a downward slope on both sides of the peak.  

The slope depends on the time scale of the triplet states and the fraction of fluorophores 

that are in the triplet state.  Linear fits for each side of time delay 0 ns are performed in 

order to subtract out this component.  From previous fits using FCS over larger time 

intervals, the measured slope should be 0.025.  The measured slopes are slightly higher, 

0.035 0.008± and 0.039 0.010± .  Fluctuations of the chain may be visible as overshoots 

of the linear fit on both sides of the antibunching dip, that disappear on the 10 ns time 

scale.    The data are noisy, and verification of this result is needed, but the possibility of 

monitoring the fluctuation time scales along with the distance distributions using TCSPC 

(described in previous section) promises to provide valuable information to the protein 

folding and polymer physics fields. 
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Appendices 

2.A. Simulation of rotational diffusion 

In order to simulate rotational diffusion, 

we use a fixed angular step size a  at each time 

step t∆ .  Assuming the dipole has an initial 

orientation ( ), 0θ φ =  with respect to the z axis.  

For each time step t∆ , we assume that the dipole 

orientation changes by an angle a , with a 

random direction, specified by the angle α  (α is 

a random number with a uniform distribution 

from 0 to 2π ).  These angles are illustrated in 

Fig. 2.19.  Given , ,  and aθ α , we determine the 

new ( )', 'θ φ  using the law of cosines and sines for spherical angles: 

 cos cos cos sin sin cos ,a aθ θ θ α′ = +  (2.14) 

 cos cos cos sin sin cos ,a θ θ θ θ φ′ ′ ′= +  (2.15) 

and 

 sin sin
sin sin a

α φ
θ

′
=
′

 (2.16) 

 

Rearranging, we get  

 cos cos cos sin sin cos ,a aθ θ θ α′ = +  (2.17) 

 
 
 
Fig. 2.19: Angle definitions for 
rotational diffusion simulations. 



 

62

 cos cos coscos
sin sin
a θ θφ

θ θ
′−′ =

′
 (2.18) 

and 

 sinsin sin
sin

aφ α
θ

′ =
′

 (2.19) 

There are a few pathological cases.  For these cases, we do the following: 

 if 0,  set ,aθ θ φ α′ ′= = =  (2.20) 

 if ,  set ,aθ π θ π φ α′ ′= = − = −  (2.21) 

 if 0,  set 0θ φ′ ′= =  (2.22) 

 if ,  set 0θ π φ′ ′= =  (2.23) 

 

  

In order to use this rotational diffusion simulation, we need to calibrate it with 

calculations using the rotational diffusion equation, 

 2
rot T

P D P
t

∂
= − ∇

∂
 (2.24) 

where rotD  is the rotational diffusion constant (units: 2rad s ) and 

2 2
2
T 2 2 2

1 1
tan sinθ θ θ θ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 is the transverse Laplacian operator.  This equation 

can be solved if we have complete spherical symmetry (a cone in more difficult – the 

eigenfunctions are harder to compute).   

To calibrate the simulation with fixed step size a  with respect to the diffusion 

equation, a functional relationship 2
rotD kaτ =  is assumed.  The first term is taken from 
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the Perrin equation, and is proportional to the rotational correlation time.  k is a constant 

of proportionality to be determined.   

Simulations were used to determine k  using a fixed angle size 0.57a = ° , 

assuming 1τ =  and adjusting the time step to give different values for rotD .  At the 

beginning of each simulation, the initial distribution of the dipole orientations was taken 

from the distribution 23 cos
2

θ .  The anisotropy for each simulation was calculated, and fit 

to the Perrin equation.  The value extracted was 0.29 0.02k = ±  

For FRET, if rotational diffusion is very fast compared to the fluorescence 

lifetime, 2 2 3κ = .  When this is not the case, simulations are used to calculate the effects 

of 2κ .   0R′  is defined to be the value of 0R  if 2 2 3κ = .  Then, Eq. (2.1) is written 
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0
FRET

1
2 3D

Rk
R

κ
τ

′ =  
 

 (2.25) 

Then at each time step, the change in orientation is calculated using the simulation 

described above, and Eq. (2.25) is used to calculate the FRET rate. 
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3. Monitoring macromolecular interactions using Photon 

Arrival-time Interval Distribution (PAID) analysis 

3.1. Introduction 

3.1.1.  Historical overview 

With the availability of the complete sequences of genomes of several organisms, 

it is critical to determine the biological function of the proteins coded by those genomes.  

Analysis of protein-protein interactions is important for this process since it can produce 

protein-protein interaction maps that place each protein in its cellular context, from which 

it is hoped to infer the protein’s function. [104, 105].  Several existing methods that 

monitor protein-protein interactions are: conventional and modified yeast two-hybrid 

systems along with reconstitution systems, phage display, fluorescence resonance energy 

transfer (FRET) methods, mass spectrometry, protein chips, and evanescent wave 

methods [104-108]. 

Fluorescence correlation spectroscopy (FCS) and related single-molecule methods 

are important tools for the in vitro analysis of macromolecular interactions, and are 

showing promise for in vivo analysis [109, 110].  FCS-related methods can detect these 

interactions in a distance-independent fashion, unlike FRET. [111]. FCS-related methods 

detect macromolecular interactions by monitoring fluorescence fluctuations that result 

when fluorescent molecules diffuse or flow across a tightly focused laser excitation 

volume (femtoliter confocal detection volume).   At concentrations less than 1 nM, the 

average molecular occupancy of the detection volume is smaller than one, allowing the 
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detection of photon-bursts generated by single molecules.  We call this the “low 

occupancy” regime.  A “photon burst” is the set of all photons detected from a single 

molecule during its transit through the confocal detection volume.  Analysis of these 

photon-bursts has been used to measure the distribution of molecular properties, such as 

fluorescence lifetime, polarization anisotropy, and fluorescence resonance energy transfer 

(FRET) [33, 34, 58, 112].  At concentrations between 1 nM-100 nM, the molecular 

occupancy is still low enough to be sensitive to the addition or subtraction of one 

molecule within that volume.  We call this the “intermediate occupancy” regime.  

Although it is not possible to separate the photons into bursts from single molecules, the 

resulting fluctuating fluorescence signal contains dynamic information about several 

processes such as translational diffusion [113], rotational diffusion [114], intersystem 

crossing to triplet states [115], and photobleaching [116].  At concentrations greater than 

100 nM, many molecules occupy the detection volume and the fluctuations are averaged 

out. We call this the “high occupancy” regime.  The primary drawback of using FCS-

related methods for monitoring macromolecular interactions is the dynamic range over 

which binding can be detected.  These methods are most sensitive in the nM 

concentration regime, whereas binding constants of protein-protein interactions often 

correspond to higher concentrations (this limitation is partially offset by the ability of 

FCS-related methods to detect small subpopulations). 

Fluorescence bursts or fluctuations are ideally suited to the study of 

macromolecular interactions.  Fig. 3.1 shows how the properties of the sample translate 

into features of the fluorescence signal for a detection volume with low occupancy.  

Macromolecular interactions such as homo-dimerization and aggregation can be 
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measured using single-channel methods.  Fig. 3.1A depicts a single-channel measurement 

on a sample containing a mixture of monomers carrying one yellow fluorescent label and 

tetramers carrying four yellow fluorescent labels in solution.  The laser excitation profile 

(shown in green) and the detection pinhole define the effective detection volume.  As 

these molecules diffuse in and out of the laser excitation profile, bursts of fluorescence 

photons are detected, shown as an intensity time trace to the right.  The three basic 

characteristics of a single-channel photon burst are: (1) the brightness of the bursts (blue 

arrows), which is proportional to the number of fluorescence labels detected, (2) the 

duration of the burst (red arrows), which is related to the diffusion time of the molecule 

across the laser beam, and (3) the time between bursts of the same species (green arrows) 

which is inversely proportional to the concentration of that species.  The same 

characteristics apply for the fluctuation analysis used at higher concentrations 

(intermediate occupancy).  In general, the fluorescence signal from an interacting pair of 

molecules or an aggregate has different characteristics than that from a free single 

molecule.  The complex or aggregate has a larger hydrodynamic radius, which results in a 

longer diffusion time.  It also has more labels than free molecules, which results in 

increased brightness of the bursts (fluorescence quenching and incomplete labeling are 

ignored at this stage).  To most effectively detect binding or aggregation, a data analysis 

scheme that measures all these properties at the same needs to be developed.   

For interactions between macromolecules of different types (for example hetero-

dimerization of two proteins), extending the analysis to two channels improves the 

sensitivity over one channel analysis [111].  The molecules of one type are labeled with 

one color (eg. yellow), and the molecules of the other type are labeled with another color 
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(eg. red.)  A complex of the two types 

of molecules has both labels.  This is 

the situation shown to the left of Fig. 

3.1B.  Signal from the two 

fluorophores is separated spectrally 

onto two detector channels, yellow and 

red.  In addition to the ways described 

for the single-channel case, the 

binding of two molecules labeled with 

the yellow and red fluorophores can be 

indicated by the detection of 

simultaneous photon bursts on both 

channels (orange arrow in Fig. 3.1B).  

This coincident detection indicates that 

both fluorescence labels are present, 

and thus the two molecules are bound.   

3.1.2.  Single-channel data 

reduction and analysis 

The task of the data analysis performed on these fluorescence signals is to extract 

these parameters using all of the information possible, and to present an interpretable 

graphical representation of the data that summarizes the relevant information in the data 

set.  Several methods summarized below have been developed to perform this task.  All 

of these methods are able to handle vast amounts of data by “reducing” the data to a one- 

 
Fig. 3.1: Detecting macromolecular 
interactions using fluctuating fluorescence 
signals.  The excitation profile from a tightly 
focused laser is shown in green in A and B.  
For single-channel applications (A), three 
important characteristics of the fluorescence 
bursts are 1) the width of the bursts (red 
arrows), 2) the height or brightness of the 
bursts (blue arrows), and 3) the time between 
bursts from the same species (green arrows).  
For multiple-channel applications (B), 
coincident detection of red and yellow 
fluorescence (orange arrow) indicates the 
presence of the red and yellow fluorophores 
on the diffusing species. 



 

68

or multi-dimensional histogram, from which the information on the diffusing species is 

extracted.  The trick is to reduce the data, but not too much.  As much information as 

practically possible should be retained to characterize the sample.   

Fluorescence Correlation Spectroscopy (FCS): FCS analyzes fluorescence 

fluctuations through the use of the correlation function [66, 113, 117].  Correlation 

functions calculated from the intensity signal reveal the time scale and amplitude of 

various molecular processes, but do not reveal the brightness of each source.  In single-

channel applications, macromolecular interactions can be detected by monitoring the 

change in diffusion time resulting from the interaction of two molecules.  However, 

binding often does not produce a large change in diffusion time: for a sphere, doubling 

the hydrodynamic volume (for instance by binding two equally sized subunits) produces 

only a 26% increase in diffusion time (since the diffusion time scales with the 

hydrodynamic radius, which roughly scales as[ ]1 3molecular weight ).  Therefore, a large 

change in size is required to measure binding using diffusion constants.   A further 

complication is that the shape of the bound molecules is also important; there is no 

general relationship between diffusion time and the number of subunits.  For example, a 

short, rod-like dsDNA fragment will diffuse more slowly than a globular protein with the 

same volume (compare the diffusion constant calculations for a sphere with those for a 

rod in [103]). 

Brightness is a reporter of binding events (ignored by FCS) that can in fact be 

more sensitive than the diffusion time.  If two interacting macromolecules are both 

labeled, the brightness of the interacting complex is double the brightness of the 

individual subunits, provided that the quantum yield does not change (which is not 
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always the case.)  Brightness has the advantage that the shape of the molecule does not 

affect it, unlike the diffusion time.  Several methods have been developed to use this 

information. 

Moment Analysis of Fluorescence Intensity Distribution (MAFID) and 

higher order correlation amplitudes: Moments of the photon counting histogram can 

be used to monitor occupancy and brightness of labeled macromolecules [118, 119]. By 

comparing the values of the mean (first order moment), the variance (second order 

moment), and the third order moment, values for the occupancy and brightness of two 

species can be extracted.  In this way, macromolecular interactions can be monitored by 

taking advantage of the change in molecular brightness when labeled molecules interact.  

Another method discussed in [120] uses the amplitudes of higher order correlations to 

extract the occupancy and brightness, but turns out to be equivalent. 

Photon Counting Histogram (PCH) and Fluorescence Intensity Distribution 

Analysis (FIDA): Rather than calculating the moments of the photon counting histogram 

as described above, it is possible to fit the histogram directly, thereby using more 

information to extract brightness and occupancy [121, 122].  In this way, sub-populations 

with different brightness can be separated [123].  The PCH and FIDA methods differ 

mainly in their treatment of the shape of the detection volume.  PCH has been used to 

monitor ligand-protein binding equlibria [124], to probe the stoichiometry of protein 

complexes [125], and to study oligonucleotide-polymer interactions [126].  FIDA has 

been used to probe receptor-ligand interactions in a format compatible with ultra-high 

throughput screening [127, 128]. 
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The PCH and FIDA methods contain information about the brightness and 

occupancy of fluorescent species, but lack the information on dynamics contained in the 

correlation function.  For a sample with a single species, it is possible to perform FCS 

and PCH or FIDA on the same data set to extract both the brightness and diffusion time 

[129].  However, if there are multiple species, each with a different diffusion time and 

brightness, there is no direct way to relate each diffusion time found to its corresponding 

brightness.  A method that simultaneously tracks diffusion time and brightness is 

necessary to address such heterogeneous samples. 

Fluorescence Intensity Multiple Distribution Analysis (FIMDA): By using a 

series of photon count histograms with multiple time bin widths, it is possible to obtain 

the same temporal information as FCS while gaining the information on brightness [130].  

This is because the shape of the photon count histogram is affected by the fluctuations 

that occur on the time scale of the time bin width.  This method is termed Fluorescence 

Intensity Multiple Distribution Analysis (FIMDA). Macromolecular interactions can be 

tracked using FIMDA by monitoring brightness and diffusion time simultaneously.   

We now review what type of information is available from each method.  FCS 

extracts concentration and diffusion time (and other temporal dynamics), but not 

brightness.   MAFID, PCH, and FIDA extract concentration and brightness, but not 

diffusion time.  FIMDA extracts concentration, brightness, and diffusion time (and other 

temporal dynamics). 

3.1.3.  Multiple-channel data reduction and analysis 

Coincident detection of two fluorophores of different colors is a more sensitive 

indicator of binding events than brightness or diffusion time used in single-channel 
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studies [111].  This is because: (1) coincident bursts are only detected when two 

molecules are associated, (2) it is less sensitive to quenching of fluorescence, and (3) 

coincident detection in two channels benefits from the properties of ratiometric 

measurement.  If two interacting molecules are labeled with the same fluorophore, it is 

necessary to detect distinct subpopulations with a factor of 2 difference in brightness.  If 

they are instead labeled with different-color fluorophores, the experiment is reduced to a 

simple “yes or no” question.  A signal in each channel indicates the presence of the 

corresponding species.  A simultaneous signal in both channels indicates a complex (1:1 

ratio between channels), and a signal on only one channel indicates a free molecule (1:0 

or 0:1 ratio between channels; random coincidence of signals also needs to be taken into 

account).  The benefit of ratiometric measurement is described in the following.  If a 

fluorescent molecule traverses the same path through the detection volume many times 

(ignoring triplet-state-induced fluctuations), the number of photons detected from the 

molecule during those traversals would follow a Poisson distribution (appendix 3.C.3), 

characterized by a mean number of photons (this noise, which is inherent in photon 

counting experiments, is referred to as “shot noise”).  This mean number of photons 

depends on the path the molecule takes through the detection volume.  Taking into 

account all possible paths through the detection volume, the distribution in photon counts 

is considerably widened in comparison to shot noise.  In contrast, the ratio between the 

intensity of two channels for an isolated burst is less affected since the mean value of this 

ratio does not depend on the path taken through the detection volume (the width of the 

distribution in ratios, however, does depend on the path of the molecule).  Measurements 

using the ratio between two channels (or that consider joint distributions for the two 
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channels) reduce the noise due to differing paths through the detection volume, and are 

thus more sensitive [58].       

Dual-color cross-correlation FCS: In dual-color cross-correlation FCS, 

interactions between molecules labeled with two different colors are monitored using the 

cross-correlation amplitude [30, 111, 131, 132].  Significant correlation amplitudes result 

only when a diffusing species contributes to both channels.  By choosing different-color 

fluorophores that can be separated into different channels with minimal leakage and 

characterizing the background, it is possible to read the occupancy of bound molecules 

directly as the amplitude of the cross-correlation.  As with single-channel FCS, the 

diffusion time of the complex can be extracted.  The occupancy and diffusion times of the 

free components can also be extracted by analyzing the autocorrelation of each channel.  

However, it is necessary to measure using a different method or to assume values for the 

relative brightness of the different species in order to extract the occupancies and 

diffusion times. 

Ratiometric single-molecule methods [multi-parameter fluorescence 

detection (MFD), two-dimensional fluorescence intensity distribution analysis (2D-

FIDA), single-pair Fluorescence Resonance Energy Transfer (spFRET)]: Photon 

burst analysis based on ratiometric methods has been developed for monitoring FRET, 

polarization anisotropy, and spectral fluctations [58, 63].  If the distance between two 

labeled molecules is in the 2-8 nm range, FRET can be used to monitor the interaction.  

For example, single-pair FRET has been used to monitor the cleavage of DNA by a 

restriction enzyme in solution [33].  The same ratiometric data analysis can also be 

applied to macromolecular interactions where the separation between fluorophores is 
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greater than the 20-80 Å nm range for FRET, although this has not been done.  In this 

case, it is necessary to excite both fluorophores individually and perform coincidence 

detection.   

Multi-parameter fluorescence detection (MFD) and 2D-FIDA perform tasks 

similar to the ratiometric single-molecule methods, with additional capabilities.  MFD 

has the additional ability to measure fluorescence lifetime [112, 133, 134], and can also 

be used to obtain the brightness information available with PCH and FIDA [34].  

Originally, the single-molecule measurements with fluorescence lifetime were performed 

with a single detector, although now they have been extended to multiple channels.  2D-

FIDA is the extension of the single-channel FIDA method described above to two 

channels.  In extracting the occupancy and brightness in each channel, it takes advantage 

of both the ratiometric and brightness information.  It can be used for samples in the low 

and intermediate occupancy regimes [135]. 

We now review what type of information is available from each multiple-channel 

method.  Cross-correlation FCS extracts coincidence, concentration and diffusion time 

(and other temporal dynamics), but not brightness.  MFD can detect coincidence and 

extract brightness and ratiometric information for multiple channels, and diffusion time.  

However, it can only work with low occupancy samples.  2D-FIDA can detect 

coincidence, and extract brightness and ratiometric information for multiple channels.  It 

can work with low and intermediate occupancy samples, but does not extract diffusion 

time (or other temporal dynamics). 

What is lacking in the existing methods is a way to combine the dynamic 

information available using cross-correlation FCS with the ratiometric and brightness 
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information available with MFD, 2D-FIDA, and ratiometric single-molecule methods, 

while allowing analysis to be performed at concentrations corresponding to low and 

intermediate occupancies.  Here we introduce a new multi-dimensional data analysis 

method termed PAID that allows the extraction of information about temporal 

fluctuations (diffusion), brightness, and coincidence between multiple channels in a 

unified manner, so that all of the characteristics of each species can be used for 

identification and for separation from other species.  PAID also presents a convenient 

visual representation of the data useful to the experimenter by focusing on photon-rich 

regions.  We will first describe and develop the Photon Arrival-time Interval Distribution 

(PAID), which can be used in a single-channel format and a multiple-channel format.  

Then, we describe the application of PAID to fluorescent species diffusing in solution, 

detailing how changes in parameters of the species affect PAID.  The application of 

PAID to macromolecular interactions, first in single-channel applications such as 

aggregation or oligomerization, then in multiple-channel applications such as binding, are 

described.  We give an overview of our model for PAID, which is described more 

extensively in the appendices.  We describe the method used for simulating fluorescent 

species diffusing through a confocal detection volume, the fitting procedure used for our 

model, the experimental sample and setup.  Finally, we present results of fitting single-

channel and two-channel simulations and experiments, demonstrating the potential of 

PAID for analyzing macromolecular interactions. 
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3.2. Theory 

3.2.1.  Development and description of PAID 

The data analysis method 

presented below is motivated by and 

optimized for the discrete format of 

the single photon-timing data as 

acquired by the setup and electronics 

shown in Fig. 3.2.  It depends on 

treating the signal as a stream of 

photons rather than an analog signal.   

In Fig. 3.2, two laser sources, 

the 514 nm line from an Ar+ laser 

and the 633 nm line from a HeNe 

laser are introduced into the 

microscope through a single-mode 

optical fiber.  The laser lines are reflected using a multiple band dichroic mirror, DM1 

(390-510-630 TBDR, Omega optical), and focused into the sample by a high numerical 

aperture oil immersion objective (NA 1.3 100X Neofluar, Zeiss, Thornwood, New York).  

The fluorescence from the sample is collected through the same objective, and passes 

through DM1.  The microscope tube lens, L1, then focuses the light onto a 100 mm 

pinhole, PH.  After passing through a second lens, L2, the fluorescence is split by a 

Fig. 3.2: Experimental configuration for 
two-color cross-correlation experiments.   
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second dichroic mirror, DM2 (630DMLP, Omega Optical, Brattleboro, Vermont), into 

red and yellow channels.  The red fluorescence passes through a bandpass filter, BP1 

(650LP, Omega Optical, Brattleboro, Vermont), and is detected using the first silicon 

avalanche photodiode, APD1 (SPCM-AQR-14, PerkinElmer, Vaudreuil, Quebec, 

Canada).  The yellow fluorescence passes through a second bandpass filter, BP2 

(580DF60, Omega Optical, Brattleboro, Vermont), and is detected using the second 

silicon avalanche photodiode, APD2.  The APD’s emit an electronic pulse for every 

photon detected.  These pulses are timed using a counter-timer board (PCI-6602, National 

Instruments, Austin, Texas), and stored in the PC. 

The single-photon-counting APD detectors shown in Fig. 3.2 emit electronic 

pulses for every photon detected (dark counts and afterpulses also contribute to the 

measured signal.)  To retain the maximum information about detected photons, 

electronics  are used to time and store the arrival time of each electronic pulse from the 

photodetectors.  This view of the photon stream, where we focus on the arrival times of 

individual photons rather than counting the number of photon counts within an arbitrary 

time interval, helps motivate new data analysis schemes, such as PAID, that go beyond 

those developed for analog signals.  The resulting data set is a stream of photon arrival 

times: Ait is defined as the arrival time of the i th  photon from the detector channel A .  The 

detected photon stream is represented as a sum of Dirac delta functions, 

 ( ) ( )
1

.
AN

A Ai
i

I t t tδ
=

= −∑  (3.1) 

where AN  is the total number of photons detected in channel A .  The use of delta 

functions allows discrete events to be represented over the continuous variable t .  Using 
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this representation for the photon stream, the number of photons that arrive between 

times mint  and maxt  is written ( )
max

min

t

A
t

dtI t= ∫n  (this comes from the properties of the Dirac 

delta function).  There are three sources of uncertainty in specifying arrival times of these 

photons.  The first, fundamental uncertainty is from the Heisenberg uncertainty principle, 

which gives an uncertainty of order 2 cλ ∼ fs .  Because this time scale is much shorter 

than any other time scale considered, the use of the Dirac delta function to represent the 

arrival of a photon is justified.  The second source of uncertainty is the response time of 

the photodetectors (300-500 ps).  This uncertainty is also negligible here, since it is much 

shorter than the ~100 µs  time scale of the diffusion of molecules across the confocal 

detection volume and the ~1 µs  time scale of triplet state induced fluctuations of 

fluorophores.  For studying dynamics in the 1 – 10 ns time scale  (such as fluorescence 

lifetime and photon antibunching), the APD response time needs to be accounted for.  We 

will extend PAID to include fluorescence lifetime information using time-correlated 

single photon counting (TCSPC), and the response time of the APDs will then be taken 

into account.  The third source of uncertainty is the resolution of the digital clock 

( 12.5 nst∆ = ) used to time electronic pulses output by the APDs (shorter than the 1 - 100 

µs  time scale).  The long term stability of the digital clock used is not critical.  We only 

require that the clock keep a fractional stability of <1% at all times scales.   

The time of arrival Ait  of each photon is recorded as an integer Ait  with a 

value Ai
Ai

t
t

 =  ∆ 
t , where the brackets indicate the greatest integer function (or floor 

function), which gives the greatest integer less than the quantity inside (eg[3.14] 3= ).  
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The arrival time can be recovered to within accuracy t∆  by multiplication with the 

recorded integer Ai Ait t≈ ∆t .  For an experiment of duration T , Ait  will be in the 

range 0,1,...,T , where
t

 =  ∆ 
T

T .  We now convert the expression with the continuous 

time variable t  in Eq. (3.1) into an expression with discrete time variable t
t

 =  ∆ 
t .  If 

AN  photons are detected in channel A , this is written, 

 ( ) ( )
1

, .
AN

A Ai
i

I
=

= ∑t δ t t  (3.2) 

 δ  is the Kronecker delta function: ( ), 1Ai =δ t t  if  Ai=t t , and ( ), 0Ai =δ t t  if Ai≠t t . 

In FCS, the statistical relationship between a photon stream at one time ( )SI t  and 

another photon stream at a later time ( )TI t τ+  as a function of the time interval τ  is 

measured using the cross-correlation,  

 ( ) ( ) ( )
( ) ( )

C S T
ST

S T

I t I t
I t I t

τ
τ

+
=  (3.3) 

If, on average, the photon streams ( )SI t  and ( )TI t τ+  increase and decrease 

together, then ( ) 1C τ > , and the two streams are “correlated”.  If they tend to move in 

opposite directions, then ( )0 1C τ≤ < , and the two streams are “anti-correlated".  If there 

is neither relationship between the two streams, then ( ) 1C τ = , and the two streams are 

“uncorrelated”.  That FCS is insensitive to brightness is most easily seen from the 

definition of the correlation function in Eq. (3.3); it is scale invariant, so that multiplying 

the intensity by a factor λ  does not change the resulting correlation.  If one assumes a 

stationary stochastic process, the ensemble averages denoted by the angle brackets can be 
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evaluated as time averages, which are approximated by averages over the discrete time 

variable t : 

 ( ) ( )
00

1 1lim limdt
→∞ →∞

=

→ ≈ ∑∫
t

T

T T

T

T T
 (3.4) 

When using the cross-correlation definition in Eq. (3.3) with the discrete expressions for 

the photon streams in Eq. (3.2), it is necessary to define a discrete time interval
t
τ =  ∆ 

τ , 

analogous to the discrete time variable t .  For the finite experiment of durationT , the 

digital estimator for the cross-correlation in Eq. (3.3) is 

 

( )
( ) ( )

( )( )

( )

0 1 1

1 1

1 , ,
Ĉ

,

S T

S T

N N

Si Tj
i j

ST
S T

N N

Tj Si
i j

S T

N N

N N

= = =

= =

+
=

−
=

∑∑ ∑

∑∑

t
δ t t δ t τ t

τ

δ τ t t

T

T
T T

T

 (3.5) 

 

The sum over the discrete time variable t in the first term is performed to obtain the 

second term (the caret indicates that ( )ĈST τ  is an estimator.)  As →∞T  for a 

stationary process, the estimator converges to the cross-correlation 

function ( ) ( ) ( )ˆlim C =C CST ST ST τ
→∞

≈τ τ
T

.  In the above expression, it can be seen that the 

cross-correlation estimator is formed by comparing the arrival times of each pair of 

photons Sit  and Tjt , and adding 1 to a histogram at the bin corresponding to the time 

interval Tj Si= −τ t t .  So, the cross-correlation estimator can be viewed as a distribution of 

time intervals between photon arrivals (since swapping the roles of SI  and TI  is 
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equivalent to changing the sign of the time interval τ , we can, without loss of generality, 

define this time interval to be non-negative: 0≥τ ).  For later convenience, we define SI  

to be the “start” photon stream, where all other quantities associated with the start photon 

stream, such as the start photon arrival times Sit , we label with a subscript S .  We also 

define TI  to be the “stop” photon stream, where all other quantities associated with the 

stop photon stream, such as the stop photon arrival times Tjt , we label with a subscriptT .  

While we keep ( )SI t  and ( )TI t  formally distinct, we may choose to assign the same 

photon stream to both so that ( ) ( )S TI I=t t .  In this case, Eq. (3.5) becomes an 

autocorrelation.   

In order to include the brightness information lacking in the cross-correlation, 

PAID adds a new photon-counting dimension n  to the cross-correlation estimator of 

FCS.  We count the number of photons Mijn that arrive between times Sit  and Tjt  in 

another formally distinct photon stream ( )MI t , called the monitor photon stream, with 

monitor photon arrival times Mkt  (Note: The monitor photon stream is formally distinct 

from the start and stop photon streams, but depending on the application may be identical 

to one or both). We obtain the number of photon counts in the time interval delimited by 

the time of each start photon Sit  and each subsequent stop photon Tjt  for every pair of 

photons indicated in the summations of Eq. (3.5).  By counting photons in each time 

interval as well as measuring its duration, we spread the cross-correlation estimate over 

the photon counting dimension n , providing an additional history of what happens 



 

81

between the detection of the start and stop photons.  The quantity Mijn  is calculated using 

the following expression, 

 ( ) ( )
1

1

Tj Tj

SiSi

t

Mij M M
t

dtI t I
−

= +

= ≈ ∑∫
t

t t
n t  (3.6) 

This expression counts the number of photons in ( )MI t  that lie between Sit  and Tjt .  

Because ( )MI t  is a sum of delta functions, Mijn is strictly an integer.  In terms of 

continuous variables, the PAID function is  

 ( )
( ) ( ) ( )

( ) ( )

,
C .

t

S T M
t

STM
S T

I t I t d I

I t I t

τ

τ θ θ
τ

+ 
+  

 =
∫δ n

n  (3.7) 

The additional factor slices the cross-correlation into strips with different numbers of 

counted monitor photons.  Rather than a photon count probability distribution 

(approximated by the photon count histogram in PCH and FIDA), the PAID function acts 

as a photon count distribution of fluorescence correlation.  The estimator for the PAID 

function (using discrete variables for a finite experiment of lengthT ) is 

 ( )
( ) ( )

1 1

, ,
Ĉ

S TN N

Tj Si Mij
i j

STM
S TN N

= =

−
=

∑∑δ τ t t δ n n
n τ

T
 (3.8) 

The PAID function ( )CSTM n τ  describes the distribution of count rate in the stop 

channel over the number n  of intervening photons in the monitor channel within a time 

interval τ  since receiving a start photon.  For each pair of photons Sit  and Tjt , an event is 

placed in a 2D histogram, where one axis is the time interval Tj Si= −τ t t , and the other 

axis is the number of monitor photons counted Mij=n n .   
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Fig. 3.3 shows how a PAID 

histogram is formed from the start, 

stop, and monitor photon streams 

using Eq. (3.8) (See appendices 

3.A and 3.B for details).  In Fig. 

3.3A, there are photon streams 

from three channels shown, the 

start, stop, and monitor channels.  

The time axis is shown in discrete 

clock units, as measured by the 

digital counter-timer board in Fig. 

3.2.  A filled square indicates that a 

photon was detected at that time 

position.  Each start photon is 

identified with a different color, each stop photon with a different letter, and each monitor 

photon with a different numbers.  Each photon in the start channel is paired in turn with 

each photon in the stop channel that occurs later in time.  The time interval between the 

start and stop photons is one axis in the PAID histogram, shown in 3.3B.  The second 

axis is the number of monitor photons counted in the time interval between the start and 

stop photons.  One example photon pair is shown in the figure: the blue start photon is 

paired with stop photon “d”.  The time interval between these two photons is 7 clock 

units, and there are 3 monitor photons (numbers 1,2, and 3) between them.  The 

 
Fig. 3.3: The formation of the PAID histogram 
from three formal photon streams from the start, 
stop, and monitor channels (described in text). 
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corresponding entry into the PAID histogram in 3.3B is coded with the cyan background 

and the letter “d”.  Other entries in the histogram are interpreted analogously.   

Note that, by summing Eq. (3.8)over n  and comparing to Eq. (3.5), we obtain the 

following identity,  

 ( ) ( )
0

ˆ ˆC CST STM

∞

=

=∑
n

τ n τ  (3.9) 

This means that the cross-correlation estimator is the collapse of the PAID estimator 

( )ĈSTM n τ  onto the time interval τ  axis.   

For a single-channel experiment, the same channel constitutes the start, stop, and 

monitor channels, ( ) ( ) ( )S T MI t I t I t= =   ; the number of photons counted between each 

pair of photons is ( ) 1
jS

iS

t

S
t

dtI t j i= = − −∫n  for the start photon indexed by i  and the stop 

photon indexed by j .  In terms of discrete variables, this special case of the PAID 

estimator is written for a finite experiment of lengthT , 

 ( )
( ) ( )

1 1
2

, , 1
Ĉ

S SN N

Sj Si
i j

SSS
S

j i

N
= =

− − −
=

∑∑δ τ t t δ n
n τ

T
 (3.10) 

This PAID estimator is the series of waiting time distributions to the thn  photon (useful 

concept for autocorrelations that cannot be extended to cross-correlations).  In [34], a 

similar construction with a single value of n  was used as a criterion in sifting for bursts. 

  Equation (3.8) can be further extended to include higher order temporal 

correlations, or more monitor photon streams, by adding factors of the form 

( )2 22 , T j S i−δ τ t t  for temporal correlations and factors of the form ( )22 , M ijδ n n  for more 
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monitor photon streams ( 2S , 2T , and 2M  are additional formal photon streams; 2n and 

2τ  are additional photon counting and time interval variables). 

The photon-counting dimension added to create the PAID estimator allows 

information on molecular brightness to be extracted in addition to the parameters already 

available to FCS.  By collapsing the PAID histograms onto the time interval axis, one 

obtains the correlation estimates used in FCS.  This allows direct comparison of the 

results for the PAID histograms to results from FCS.  This new method can capitalize on 

the general familiarity with FCS, while providing information available using PCH or 

FIDA. 

3.2.2.  Application of PAID to fluorescent species diffusing in solution 

Fluorescence fluctuation experiments determine molecular properties by 

characterizing the stochastic temporal fluctuations of fluorescence intensity.  Fluorescent 

molecules diffusing freely in solution (avoiding surface-induced perturbations) are 

excited and detected using a single-molecule epi-fluorescence confocal microscope (see 

Fig. 3.2).  The fluorescence signal is split into spectral regions that match the emission 

spectra of the fluorophores.  For F  freely diffusing, fluorescent species in solution, we 

specify the species by an index with values 1 Fα = … ; we associate 0α =  with a constant 

background exhibiting Poisson statistics.  The tightly focused laser excitation and pinhole 

on the detection path used in single-molecule confocal microscopy define the effective 

detection volume effV .  The z  axis is defined as the optical axis of the microscope, and 

the x  and y  axes are perpendicular to it.  For a Gaussian detection volume, the width of 

the effective detection volume is ω  in the x  and y  directions, and l  in the z  direction 
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(see also appendix 3.C).  (Note: non-Gaussian detection volumes are also encountered).  

The primary parameters of a diffusing species α  that can be extracted from fluorescence 

fluctuation experiments are:   

1. D
ατ , the diffusion time of a molecule of species α  across the effective 

detection volume.  We define the diffusion time to be the time at which the 

autocorrelation amplitude decays by a factor of 2.  For a Gaussian detection 

volume with l ω , 
2

4
D

Dα
α

ωτ =  , where Dα  is the diffusion constant. 

2. cα , the occupancy or average number of molecules of species α  in the 

effective detection volume effV .  The concentration is obtained by dividing the 

occupancy by the effective detection volume. 

3. Aqα , the brightness or count rate per molecule averaged over the effective 

detection volume effV  of species α  in detector channel A .   

To find the average count rate for species α  in detector channel A , Akα , we 

use A Ak c qα α α= .  For the background ( 0α = ), the only parameters are{ }0 Ak , the count 

rate in each detector channel A .   

Other properties of fluorophores extracted from fluorescence fluctuation 

experiments are the rate for intersystem crossing to the triplet state, the triplet-state 

lifetime, the rate for photobleaching, the singlet-state lifetime, and photon antibunching 

[136].  Fluorescence saturation can also affect the shape of the effective detection volume 

[137].  As a simplifying first approximation, we have not modeled these effects here, but 

will in future studies. 
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We assume that the time between subsequent association or dissociation events is 

much larger than the diffusion time D
ατ .  This means that if we monitor an 

equilibrium A B AB+ , we expect to observe A , B , and AB , but not the association or 

dissociation events between A  and B .  This allows us to model the diffusing species as 

static species, ignoring any fluctuations within the time scale of diffusion across the 

detection volume.  A lower bound on the time between association events can be found 

from diffusion-limited encounter rates between A  and B .  If A  and B  are assumed to be 

of similar size, the encounter rate encounterk  is approximately encounter 8 3k RT η= , where η  is 

the viscosity of the solution, T is the temperature, and R is the molar gas constant.  Near 

room temperature, this is approximately 10 -1 -1
encounter 10  M sk ∼ .  This means that if there is 

a 1 nM concentration of B , the rate at which molecules of species A  will encounter 

molecules of species B  is 10 s-1.  This gives a time between encounter of 100 ms, which 

is at least 100 times slower than the diffusion time of the molecules across the detection 

volume.  We also point out that, in order to have a significant population of complexes, 

the dissociation rate for AB A B→ + must be similar to or slower than the encounter rate.  

So, at nanomolar concentrations, we do not expect to observe a significant number of 

association or dissociation events within the diffusion time of the fluorescent species. 

We now describe how the parameters of a diffusing species affect the PAID 

estimator for a single channel, ( )CSSS n τ , for a single diffusing species ( 1α = ), a single 

detector channel ( 1A = ) and background.  The parameters describing the system are the 

occupancy 1c , brightness per molecule in channel 1A = , 11q , diffusion time 1
Dτ , and 

background count rate 01k .  At time interval 0τ = , a photon is received from a fluorescent 
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diffusing molecule of species 1α = .  The molecule that emitted the photon is somewhere 

inside the effective detection volume effV  since the position distribution for emitting 

molecules matches the detection volume (see appendix 3.C.1).  In addition to the 

molecule that emitted the photon, there are an average of 1c  other molecules of species 

1α =  inside the effective detection volume (for a total of 1 1c +  molecules at 0τ = ); since 

the molecules are assumed independent and there are a large number of other molecules 

present inside a solution of comparatively large volume, the presence of one molecule of 

a species does not affect the probability of another molecule being present.  This is 

equivalent to assuming that the number of molecules present at one time in the effective 

detection volume follows a Poisson distribution.  So, while the molecule that emitted the 

photon is present (time interval 1
Dτ τ ), the average count rate in detector channel A  is 

the average number of molecules present ( )11 c+  multiplied by the brightness per 

molecule ( )11q : ( ) ( )11 1 1 111Dk c qτ τ = + .  After a time interval 1
Dτ τ , the molecule that 

emitted the photon has diffused out of the detection volume, and the average count rate 

returns to the value for an arbitrary time, ( )11 1 1 11
Dk c qτ τ = .   

Fig. 3.4A shows how PAID records this sequence of events for a 30 s simulation 

with diffusion time 1 100 sDτ µ= , brightness per molecule 11 50 kHzq = , 

occupancy 1 0.1c = , and no background 01 0.0 kHzk = .  There is a peak of high correlation 

density at small τ , outlined by the white and red contours, that decays with a time 

interval scale 1
Dτ τ∼ , just as with an autocorrelation used in FCS.  This indicates that the 

molecule that emitted the photon at time interval 0τ =  is still present in the detection 
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volume.  Since the count rate at this time interval is ( ) ( )11 1 1 111Dk c qτ τ = + , the peak of 

high correlation density follows a trajectory in the histogram of the form ( )1 111 c q+n τ∼  

[ ( )1 111 c q+ is the slope (vertical 

offset in log-log plot) of the red 

ridge].  After the molecule diffuses 

out of the detection volume, the peak 

decays in height, indicating that the 

molecules present are uncorrelated 

with the initial photon.  The count 

rate is decreased 

to ( )11 1 1 11
Dk c qτ τ = , and the 

correlation density peak follows a 

trajectory in histogram of the 

form 1 11c qn τ∼ , which in the log-log 

plot has the same slope as before but 

with a lower offset. 

Individual parameters 

influence specific features in the 

PAID histograms.  Figs. 4B-4E show 

the effects of changes in the parameters 1
Dτ , 1c , 11q , and 01k of the diffusing molecules on 

the PAID histogram.  In Fig. 3.4B, the occupancy was increased by a factor of 10 

compared to Fig. 3.4A, 1 110c c′ = × .  The histogram is narrower in the vertical direction 

 
Fig. 3.4:  The effects of changes in the 
characteristics of diffusing molecules on the PAID 
histograms formed from a single channel 
simulations.  The x axis is the time interval 
between the start and stop photons, and the y axis 
is the number of monitor photon counts between 
them.  A-F illustrate how changes in the parameters 
of the diffusing species, the background count rate, 
and the composition of the sample affect the PAID 
histogram.  Arrows indicate changes in features 
(see text for details).   G plots the the 
autocorrelations corresponding to figures A-F. 
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(shown by opposing arrows), the correlation amplitude is lower by a factor of 10, and the 

long time count rate is higher by a factor of 10 (shown by arrow on the upper-right).   

In Fig. 3.4C, the brightness is increased by a factor of 10, 11 1110q q′ = × , shifting 

the histogram up in the log-log plot as indicated by the arrows.  Also, the histogram is 

slightly narrower along the monitor photon count axis, since the shot noise decreased 

with higher photon count values.   

In Fig. 3.4D, the diffusion time is increased by a factor of 10 compared to Fig. 

3.4A, 1 110D Dτ τ′ = × .  Notice that the red and white contours are extended by a factor of 10 

in time interval, as shown by the arrow.   

In Fig. 3.4E, a constant background with rate 01 5.0 kHzk =  is added.  The 

correlation amplitude is decreased since many of the start photons are now uncorrelated 

background photons, and the background component can be seen as a slower falloff of 

the histogram to the right of the main correlation peak (shown by the arrow).  The total 

count rate is also doubled, which can be seen at long time intervalsτ .   

In Fig. 3.4F, a second species is added with 4 times the brightness, 21 11 4q q′ = × , 

an occupancy 2 0.006c = , and diffusion time 2 100 sDτ µ=  along with a background 

component with 01 0.765 kHzk = .  These parameters were chosen so that the correlation 

curves corresponding to Figs. 4A and 4F would overlap, emphasizing the limitations of 

FCS. 

The advantages of PAID over FCS can be seen in Fig. 3.4G, which shows the 

autocorrelations for each of the simulations in Figs. 4A-4F.  In FCS, the occupancy is 

extracted from the correlation amplitude, which is ( ) 10 1 1SSC cτ = = +  for a single 
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diffusing species with no background.  For the simulation for Fig. 3.4A, 1 0.1c = , so the 

autocorrelation amplitude is ( )0 11.0SSC τ = =  (black curve in Fig. 3.4G.)  One limitation 

of FCS is that an increase in occupancy and an increase in the background count rate 

have the same effect on the correlation curve: both changes decrease the correlation 

amplitude.  Compare the black curve in Fig. 3.4G to the red curve, which is for a 10-fold 

increase in occupancy ( 1 110c c′ = × ), and to the cyan curve, which is for the addition of 

background ( 01 5 kHzk = ).  In contrast, with PAID, the addition of an uncorrelated 

background (Fig. 3.4E) and the increase in occupancy (Fig. 3.4B) are distinguishable: an 

increase in occupancy only narrows the distribution whereas an increase in background 

adds an additional component at lower count rate.  Another limitation of FCS is that a 

change in molecular brightness does not affect the correlation curve: compare the black 

curve in Fig. 3.4G with the dashed green curve, for which 11 1110q q′ = × .  While the two 

autocorrelation curves overlap, the PAID histograms (Figs. 4A and 4C) are clearly 

distinguished.  Also, the autocorrelation corresponding to the two-component sample of 

Fig. 3.4F (magenta line) is indistinguishable from the autocorrelation corresponding to 

homogeneous sample of Fig. 3.4A.  This indicates that FCS does not have the ability to 

detect heterogeneity in brightness. 

Clearly discernable visual features in histograms often provide the first clues to 

interesting findings (such as additional subpopulations) or experimental problems.  The 

photon counting histograms used in FIDA/PCH and FIMDA weight all time bins equally.  

At low occupancy, most of the bins correspond to times when no molecule is present and 

very few photons are counted.  Under these conditions, most of the time bins that contain 

a large number of photons due to the presence of fluorescent molecules occur at low 
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probability.  In contrast, the PAID histogram focuses on photon-rich regions (as do the 

cross-correlation estimator and the burst analysis methods such as MFD.)  It retains the 

intuitive nature of the correlation function, while simultaneously providing information 

available so far only by using the photon counting histogram. Another advantage of 

PAID is that while single-molecule burst analysis methods can only be applied to 

samples with low occupancy, PAID can be applied to samples with low and intermediate 

occupancy, so that it has a larger dynamic range for measuring binding constants. 

3.2.3.  Application of PAID to the determination of stoichiometry 

There are many applications where one wants to study an oligomerizing system.  

Examples include receptor ion channel oligomerization in the cell membrane [138, 139], 

and the formation of amyloid plaques associated with neurodegenerative diseases 

(associated with prions) [17, 18, 140].  As depicted in Fig. 3.1A, monomeric species and 

complexes or aggregates can be distinguished by differences in their brightness and 

diffusion time.  For a single diffusing species, and no background, one could determine 

the occupancy and diffusion time using FCS.  The molecular brightness could be 

extracted by dividing the average count rate by the measured occupancy.  However, 

background is always present (although it can be subtracted), and, more importantly, a 

variety of species are likely to be present in oligomerizing systems.  In aggregation 

processes, there can be a wide distribution of species carrying variable numbers of 

subunits.  Incomplete labeling, quenching of fluorescence, and photobleaching can 

further result in species with different brightness.  Because of these complications, the 

method used ought to be able to detect heterogeneity in the molecular brightness.  The 

PCH/FIDA methods address this issue.  However, because the models for these methods 
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do not account for diffusion, the time bin size used must be kept significantly shorter than 

the diffusion time.  This prevents the full use of the photon data stream, and does not 

allow the extraction of the diffusion time (which may be useful for differentiating 

quenched aggregates from non-quenched monomers).  The PAID histogram is ideal for 

the simultaneous measurement of these properties.  The model developed here accounts 

for diffusion over the entire range of time intervals.  The brightness and diffusion time of 

several sub-populations can be monitored as functions of experimental conditions or 

time.  An example of a PAID histogram for a heterogeneous sample made up of 

monomers and tetramers is shown in Fig. 3.4F.   

3.2.4.  Application of PAID to binding 

Dual-channel methods provide improved sensitivity over single-channel methods 

for the detection and characterization of the binding of two different molecules using 

fluorescence fluctuation methods [111].  As illustrated in Fig. 3.1B, in a dual-color 

fluorescence binding assay, one molecule A y is labeled with a fluorophore of one color 

(for example “yellow”, denoted y ), while the second molecule Br  is labeled with a 

fluorophore of another color (for example “red”, denoted r ).   Each fluorophore is excited 

by a distinct laser wavelength.  There are three species present in solution:  free 

molecules ( A y and Br ), and complexes ( A By r ).  By extending cross-correlation FCS to 

PAID, we can use the information on brightness to more accurately distinguish between 

species and background.  In cross-correlation FCS studies, leakage and background can 

cause difficulty in determining the occupancy of complexes [30].  Although control 

experiments can be used to extract this background and leakage, it is of greater utility if 
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one can extract all of these parameters from one data set.  Control experiments are then 

needed only for checking consistency, rather than extracting values to be used in the 

binding experiment. 

Bandpass filters are used to select spectral regions for different channels.  The  

“yellow” and “red” fluorophores y  and r have corresponding “yellow” and “red” 

detection channels, denoted, respectively, Y  and R .  Because of the vibronic tail of 

organic fluorophores toward the red end of their emission spectra, there is typically a 

significant contribution from y into the detection channel R . The contribution from r  

into the detection channel Y  is typically negligible.   

We extract information about 

binding using a series of PAID 

histograms.  For two-channel 

experiments, there are 8 possible 

configurations for the PAID histogram 

(shown in table 3.1): the start, stop, and 

monitor channels can independently be 

assigned the yellow or red channel, 

which gives 8 possibilities.  The 

configuration of the start and stop 

channels selects species of interest, which emit photons in both the start and stop 

channels.  The choice of monitor channel determines the fluorophore which will be 

analyzed in terms of brightness using the PAID histogram.   

Table 3.1: Possible channel assignments 
for two-channel PAID histogram 
 

Start - S  Stop - T  Monitor - M  

Red - R  Red - R  Yellow - Y  

Red - R  Red - R  Red - R  

Red - R  Yellow - Y  Red - R  

Red - R  Yellow - Y  Yellow - Y  

Yellow - Y  Red - R  Red - R  

Yellow - Y  Red - R  Yellow - Y  

Yellow - Y  Yellow - Y  Red - R  

Yellow - Y  Yellow - Y  Yellow - Y  
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Fig. 3.5: Two-channel PAID histograms for simulations containing the species 
expected in a binding experiment.  In A-D, three species are present: (1) free red-
labeled molecules ( 1 0.05c = , 1 300 µsDτ =  , 1 50.0 kHzRq = , and 1 0.0 kHzRq = ), (2) 
free yellow-labeled molecules ( 2 0.05c = , 2 300 µsDτ =  , 2 5.0 kHzRq = , 
and 2 45.0 kHzYq = ), and (3) red- and yellow-labeled complexes 
( 3 0.05c = , 3 400 µsDτ =  , 3 55.0 kHzRq = , and 2 45.0 kHzYq = ).  The background in 
each channel was set to 0 0 2.0 kHzR Yk k= = .  In A, the red channel is assigned to be 
the start, stop, and monitor channels.  In B, the red channel is assigned to be the start 
and stop channels, but the yellow channel is assigned to be the monitor channel.  In C, 
the red channel is assigned to be the start and monitor channels, while the yellow 
channel is assigned to be the stop channel.  In D, the yellow channel is assigned to be 
the start and stop channels, while the red channel is assigned to be the monitor 
channel.  In E-H, the complex present in A-D is removed.  Vertical slices at time 
interval 1 msτ = from the PAID histograms in A-H are shown in I-L that show the 
difference between the histograms with and without the complex. 
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Fig. 3.5 shows PAID histograms for a simulation of a binding experiment.  Figs. 

3.5A-D show PAID histograms for a two-channel experiment if background, free 

molecules A y  and Br , and complexes A By r are present.  Figs. 3.5EH show the PAID 

histograms if the complexes A By r  are absent.  The cartoons of the free molecules and 

complexes indicate which species contribute to any large correlation density peak.  Figs. 

3.5I-L compares vertical slices at time interval 1 msτ =  for the histograms in the 

presence and absence of A By r . 

For the PAID histograms with the red channel assigned as the start channel 

( S R= ) and the yellow channel assigned as the stop channel (T Y= ), time regions where 

complexes are present are emphasized, since complexes emit photons in both channels 

whereas the free molecules do not.  There are two PAID histograms with S R=  

andT Y= ; one assigns the red channel to the monitor channel ( M R= ), and monitors the 

brightness of r  (Fig. 3.5C shows the PAID histogram with A By r  present, and Fig. 3.5G 

shows the PAID histogram with A By r  absent.)  Note that the correlation density peak in 

Fig. 3.5C corresponding to the complex is absent in Fig. 3.5G (the small correlation peak 

present in Fig. 3.5G corresponds to the contribution of y  into R ).  The other PAID 

histogram with S R=  and T Y=  assigns the yellow channel to the monitor 

channel M Y= , and monitors the brightness of the yellow fluorophore.  There are two 

more possible histograms, where the assignments of the start and stop channels are 

swapped ( S Y= and T R=  ).  The four histograms described so far appear similar to 

Figs. 3.5C and 3.5G, and so only one example is shown.  Together, these four histograms 
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determine the occupancy, diffusion, and brightness in the yellow and red channels 

of A By r . 

The PAID histograms that assign the red channel to the start and stop channels 

( S R= andT R= ) emphasize time regions where Br  and y rA B are present, since both 

emit photons in the red channel.  For the histogram that assigns the red channel to the 

monitor channel ( M R= ), the contributions from Br  and y rA B  overlap since both have 

a similar brightness in channel R .  This is the situation shown in Figs. 5A, 5E, and 5I.  

There is only one correlation peak visible, where Br  and y rA B  both contribute.  

When y rA B  is absent, in Fig. 3.5E, there is no dramatic change in the histogram.  

However, for the histogram with the yellow monitor channel, M Y= , the contributions 

from Br  and y rA B  are well separated since y rA B  emits in Y  whereas Br  does not (see 

Figs. 3.5B and 3.5J).  When y rA B  is absent, the corresponding correlation density peak is 

noticeably absent (see Figs. 3.5F and 3.5J).  The PAID histograms that assign the yellow 

channel to the start and stop channels ( S Y= andT Y= ), emphasize A y  and y rA B  in a 

similar manner.  See Figs. 3.5D and 3.5H for a comparison of the PAID histograms 

with S Y= , T Y= , and M R=  when y rA B  is present and absent, respectively. 

Although not absolutely necessary for PAID (in contrast to cross-correlation 

FCS), binding assays are ideally performed by first extracting the properties of the free 

molecules in experiments where A y  or Br  are present.  Only then are the binding 

experiments performed with both species present.  The parameters extracted for A y  and 

Br  can be fixed if necessary in the fitting of the binding measurement to improve the 

sensitivity of the method.   
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By performing a global fit of all eight two-channel PAID histograms, the 

brightness of the complex in both channels, the diffusion time of the complex, and the 

occupancy of the complex can all be extracted while obtaining the occupancies, diffusion 

times, and brightness of the free components.   

Higher sensitivity could be 

achieved if two monitor channels were 

used for the two-channel experiments, 

allowing the use of ratiometric 

information not available with a single 

monitor channel.  Observables in 

single-molecule diffusion studies that 

depend on the ratio of two channels 

are more sensitive than brightness.  A 

PAID histogram with two monitor 

channels has three axes: the time 

interval axisτ , the number of photons 

in the red channel Rn , and the number 

of photons counted in the yellow 

channel Yn .  Fig. 3.6A shows three 

slices of this histogram at different 

time intervals when A y , Br , and A By r  

are present, and Fig. 3.6B shows the 

same three slices when A By r  is absent.  The histograms shown are for the PAID 

Fig. 6: Two-channel, two monitor channel 
PAID histograms for the same simulations 
as in Fig. 5.  The red channel is assigned as 
the start channel and the first monitor 
channel along the horizontal axis.  The 
yellow channel is assigned as the stop 
channel and the second monitor channel 
along the vertical axis.  A two-monitor 
channel PAID histogram is three-
dimensional, so three two-dimensional 
slices at 100 µsτ = , 1 msτ = , and 

10 msτ = are shown for each histogram.  
In A, both free species and complex are 
present.  In the 1 msτ = slice, a cartoon of 
each diffusing species is placed next to the 
contribution from that species.  In B, the 
complex is absent.  
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histogram with the red channel assigned as the start channel ( S R= ), the yellow channel 

assigned as the stop channel ( T Y= ), and a monitor channel for each channel 

( 1M R= and 2M Y= ).  A cartoon of a particular type of molecule is placed in the 

1 msτ = slice at the approximate location where it contributes.   The histograms in Figs. 

3.5C and 3.5G are the collapse of Figs. 3.6A and 3.6B, respectively, summing along the 

yellow monitor channel axis, while keeping the time interval and red monitor channels 

axes.  For an isolated burst, the number of photons counted depends on the diffusion path 

taken through the detection volume, whereas the ratio between two channels does not.  

For example, the correlation density peak in Fig. 3.6A at 1 msτ =  corresponding the 

complex is wider in the direction of the diagonal R Y=n n  than in the perpendicular 

direction.  The one monitor channel PAID histogram is a collapse of the two monitor 

channel histogram onto the Y  or R  axis.  This collapse smears the central peak; the 

subpopulations of complex and free molecules are not clearly separated in the one 

monitor channel case, but are separated with two monitor channels (compare the 

1 msτ = slice in Fig. 3.6A with the corresponding single monitor channel histogram in 

Fig. 3.5C.)  Although the benefits are clear, the fitting model has not yet been extended to 

account for two monitor channels.  The remainder of the paper will use only a single 

monitor channel.  

3.2.5.  Model for PAID 

Our model for the PAID function is detailed in appendix 3.C.  Here we give the 

general outline and the guiding principles of the model, which is used to fit the data using 

non-linear least squares method.  For this, accuracy and efficiency are the two most 
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important requirements.  Without accuracy, fitted values may be skewed and features in 

the residuals are will not be easily distinguished from features due to subpopulations in a 

heterogeneous sample.  Efficient model calculations are necessary to make a fitting 

routine practical.  Efficiency issues arise more often in models based on numerical 

methods than those based on analytical formulas due to the increased computational 

burden. 

The assumption that the molecules in solution diffuse independently, with the 

time between association and dissociation events much longer than the diffusion time, 

allows the PAID function for all molecules to be expressed as a sum of convolutions of 

the PAID function for a single molecule with the photon count probability distributions 

for many molecules (for details see appendices 3.C and 3.G).  The expressions for single 

molecules are approximated by Monte Carlo simulation of possible diffusion paths 

through the confocal detection volume (similar to [141]).  A scaling law is used to model 

changes in brightness or diffusion time.  Depending on the accuracy desired, the confocal 

detection volume is set as an analytical Gaussian detection volume, as a numerical 

approximation, or as an experimentally measured detection volume, allowing the direct 

application of the expected detection volume to the model.  Our model is able to account 

for the possible diffusion paths through that volume, in contrast to either FIDA or 

FIMDA [122, 130].  There, only the volume density for a given brightness value is 

required.  This indeed simplifies their model, but comes at the expense of not being able 

to model the possible diffusion paths. 

A slight modification of the PAID model allows the calculation of an alternative 

and more accurate model for FIMDA [130], referred to as “modified FIMDA”.  A 
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comparison of the parameters extracted using PAID, FIMDA, and the modified FIMDA 

model reveals whether any differences in the accuracy of extracted parameters are caused 

by the change in the fitting model or the change in the histogram.   

To obtain the final expressions for the PAID function through the combination of 

the single-molecule expressions, it is necessary to compute many convolutions, which 

produces the primary bottleneck in the model calculation.  Because of the wide temporal 

and dynamic ranges over which fluorescence fluctuations occur, logarithmic axes are 

desirable.  For the most efficient calculation, the convolution method used must work in a 

logarithmic domain.  However, pure Fast Fourier Transform (FFT) methods demand 

linearly spaced data, which quickly produces huge arrays.  A novel method is presented 

in appendix 3.H that combines the use of the FFT with a quasi-logarithmic scale, making 

the model calculation practical. 
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3.3. Materials and methods 

3.3.1.  Simulation of translational diffusion of molecules, and photon emission and 

detection 

The simulations for translational diffusion of molecules, photon emission and 

detection were performed as in [142], with modifications.  A Gaussian 

excitation/detection volume with 0.35µm, 1.75µmlω = = is placed at the center of a 

three-dimensional simulation box of size 3
box 3.5 3.5 17.5µmV = × × .  A Gaussian 

excitation/detection volume need not be used.  In fact, another volume is used for the 

analysis of the experimental data in section 3.4 (the idealized Gaussian detection volume 

does not accurately match the detection volume of the actual experimental setup).  We 

use a rough approximation to the detection volume, ignoring vector diffraction and the 

differences between the excitation and detection profiles for different wavelengths.  We 

calculated using scalar diffraction the expected laser excitation profile when the oil 

immersion objective is focused 20 mm inside the aqueous solution.  We used random 

sampling of contributions from plane waves.  The use of planes waves for vector 

diffraction is described in references [143, 144].  The effect of the pinhole in the 

detection path (100 mm) was calculated using geometric optics, similar to [145], except 

that the water-glass dielectric surface is taken into account.  The peaks of the excitation 

profile and detection profile maxima did not overlap in the z direction, so they were 

translated with respect to each other until they did.  Adjustment of the pinhole or the 
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photodetectors along the emission light path to maximize the signal would produce 

similar results (we do not adjust the pinhole in our setup, but we do adjust the 

photodetectors).  By multiplying the two profiles, we obtain the detection volume.  This 

volume is used as the basis for calculating the kernels used for fitting the experimental 

data.  The size of the calculated effective detection volume is 3.2 µm3.  For this volume, a 

concentration of 1 nM corresponds to an occupancy of 1.9.  The diffusion time of a 

molecule of species α  with a diffusion constant Dα  through this detection volume, was 

calculated by simulating many paths through the detection 

volume: ( )10 22.8 10  cmD Dατ −= × . 

A fixed number of molecules is placed inside the simulation box, which has 

periodic boundary conditions (when a molecule leaves the volume, it comes back through 

on the opposite side at the same lateral position).  Diffusion into and out of the detection 

volume is simulated by a series of steps, generated at a time scale short enough to ignore 

the effects of diffusion on the excitation rate of the molecules within this step.  We 

use 1 st µ∆ = , since we choose diffusion times such that D 100 sτ µ≥ .  At each time step, 

the distance step for each dimension (x,y,z) is determined by a pseudorandom number 

generated with a Gaussian distribution, with mean 0µ =  and standard 

deviation 2D tσ = ∆ , where D  is the diffusion constant.  The diffusion step generation 

distribution is taken directly from the Green’s function for three-dimensional diffusion 

[Eq. (3.23) in appendix 3.C.2;[146]].  At each diffusion step, a series of pseudo-random 

numbers is generated with an exponential distribution with a decay rate λ  that depends 

on the excitation rate for the molecule’s position (See Eq.(3.17)) until time t∆  is passed, 

thereby generating a series of arrival times for emitted photons.  The photons are 
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assumed to emit immediately upon excitation, although additional photophysics should 

be taken into account (future studies).  Finally, another pseudo-random number is 

generated to see which if any channel detects the photon.  If the photon is detected, the 

time of arrival and detection channel are saved.  The resulting photon sequences can be 

subjected to any of the possible data reduction and analysis techniques. 

3.3.2.  Fitting routine 

We use the Levenberg-Marquardt nonlinear least squares fitting procedure [147] 

to extract the parameters from the data, calculating the necessary partial derivatives 

numerically.  The model used is described in detail in appendix 3.C.  To estimate the 

standard deviation of errors, we use ten independent instances of the histogram to 

calculate an estimate of the statistical errors of each bin.  The statistical errors are used as 

weights in the fitting routine (this method is used for FCS in [142].  If a bin is nonzero in 

fewer than ten instances, it is excluded from the fit.  Without this restriction, we found 

that only a few points dominate the value for 2χ  (the 2χ  merit function is not ideal for 

sparsely populated bins in histograms). 

3.3.3.  Preparation of dsDNA 

We used fluorescently-labeled dsDNA fragments as a model system for exploring 

the capabilities of PAID.  Five dsDNA fragments were synthesized: (1) Cy5-dsDNA, (2) 

dsDNA-Cy3, (3) Cy3-dsDNA, (4) Cy3-dsDNA-Cy3, and (5) Cy5-dsDNA-Cy3.  The 

dsDNA was prepared using standard PCR protocols [148] with one or two of the DNA 

primers labeled with a fluorophore at their 5’ end.  The fluorophores used were Cy3 

(emits in the “yellow” part of the spectrum) and Cy5 (emits in the “red” part of the 
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spectrum).  We prepared Cy3-dsDNA and Cy3-dsDNA-Cy3 for testing the single-

channel applications of PAID, and we prepared Cy5-dsDNA, dsDNA-Cy3, and Cy5-

dsDNA-Cy3 for testing two-color applications.  For Cy5-dsDNA-Cy3 and Cy3-dsDNA-

Cy3, the separation between the two fluorophores is large enough (65 bp, ~240 Å) to 

preclude any FRET between the Cy3 and Cy5 or Cy3 and another Cy3.  The 

experimental data were acquired for 5 minutes on dilute samples (30 pM – 1 nM) of 

dsDNA fragments in a 20 mM HEPES buffer in the presence of 50 mM NaCl, 5% 

glycerol, and 1 mM MEA (pH 7.0).   

3.3.4. Experimental setup 

The experimental setup is similar to the one described in diffusion FRET studies [(see 

Fig. 3.2) and  [33, 58].  Two laser beams (514 nm Ar+ excites Cy3 and 633 nm HeNe excites 

Cy5) are introduced into and coupled out of the optical fiber.  For all measurements, we used 200 

mW from the 514 nm laser and 66 mW from the 633 nm laser.  The 514 nm line weakly excites 

Cy5 (~3% of maximum), but this effect is overwhelmed by the 633 nm excitation.  A triple band 

dichroic mirror (390-510-630 TBDR, Omega optical, Brattleboro, Vermont) is used to reflect the 

two laser lines, while transmitting the emissions of Cy3 and Cy5.  The laser is focused 20 mm 

inside the solution by a 100X 1.3 NA Zeiss Neofluar oil immersion objective.  Fluorescence from 

the excitation volume is split into two detection channels with a dichroic mirror (630 DMLP, 

Omega Optical, Brattleboro, Vermont), the Cy5 channel (>650 nm), and the Cy3 channel (550 

nm-610 nm).  Silicon avalanche photodiodes (SPCM-AQR-14, PerkinElmer, Vaudreuil, Quebec, 

Canada) are used to detect the photons.  The electronic pulses resulting from these photons are 

individually timed by a counter-timer board (PCI-6602, National Instruments, Austin Texas), and 

stored in a PC. 
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3.4. Results 

3.4.1. Simulations – extracting stoichiometry in a single channel 

We generated two series of single-channel, single-species simulations in a 

Gaussian detection volume to demonstrate the ability of PAID to simultaneously extract 

occupancy, brightness, and diffusion time and to compare it to FCS, FIDA (PCH is 

assumed to obtain similar results), and FIMDA.  Because the simulations have only one 

channel, the PAID histogram assigns that channel to be the start, stop, and monitor 

channels.  The first series consists of 10 simulations of 30 s each, with an occupancy 

1 0.1c =  (low occupancy), diffusion time 1 100 µsDτ = , and brightness per 

molecule 11 50 kHzk = .  The second series is the same, except that the 10 simulations are 

10 s each, with an occupancy of 1 1.0c = (intermediate occupancy).   

The estimated parameters extracted using each method are shown in table 3.2; the 

parameters for simulations with low occupancy ( 1 0.1c = ) are shown at the top, and those 

for simulations with intermediate occupancy ( 1 1.0c = ) are shown at the bottom. The first 

column lists the names of the parameters for the fit, along with 2χ .  The second column 

lists the parameter values for the simulations.  The remaining columns show the sample 

mean and sample standard deviation of the parameters extracted from 10 fits using the 

listed methods: PAID, modified FIMDA, FIMDA, FCS, and FIDA.  For a sample size N , 

the error in the sample mean found is a factor of N  smaller than the sample standard 

deviation listed for each parameter [149].  So for 10 fits, we expect the error in the mean 
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values quoted to be about a factor of 10 3≈  smaller than the standard deviations 

quoted. 

We generated two additional series of simulations to test the ability of these 

methods to detect the stoichiometry of multiple subunits in a single-channel experiment.  

As before, the first series is for low occupancy ( 1c = 2c = 0.05), and the second is for 

intermediate occupancy ( 1c = 2c = 0.5).  The second species has twice the brightness of the 

first species, plus a 50% longer diffusion time (a convenient value somewhat longer than 

would be expected for a dimer).  Table 3.3 shows the results for the two-component 

simulations.  The structure for table 3.3 is the same as table 3.2, except that there are 

additional parameters required to account for the second species.     

Table 3.2: Parameters Extracted using PAID, modified FIMDA, FIMDA, FCS, 
and FIDA for single-channel, single-component simulations in a Gaussian 
detection volume 
 

Parameters Simulation PAID Fit Modified 
FIMDA Fit FIMDA Fit FCS Fit FIDA Fit 

10 Simulations (30 s each): Low Occupancy ( 1c =0.1) 

2χ  - 1.19 ± 0.17 1.13 ± 0.14 4.69 ± 0.64 1.51 ± 0.52 0.63± 0.27 

01k  (kHz) 0.0 0.01 ± 0.01 0.002 ± 0.003 0.005 ± 0.008 N.A. 0.02 ± 0.01 

1c  (mol) 0.1 0.100 ± 0.002 0.099 ± 0.002 0.100 ± 0.002 0.099 ± 0.002 0.105 ± 0.003 

D
1τ  (µs) 100.0 98 ± 2 99 ± 1 99 ± 2 95 ± 2 N.A. 

11q  (kHz/mol) 50.0 48.9 ± 0.8 49.2 ± 0.9 49.7 ± 0.8 N.A. 47.3 ± 0.7 

10 Simulations (10 s each): Intermediate Occupancy ( 1c =1.0) 

2χ  - 1.01 ± 0.13 0.80 ± 0.11 1.04 ± 0.21 1.12 ± 0.48 0.66± 0.33 

01k  (kHz) 0.0 0.03 ± 0.03 0.06 ± 0.02 0.13 ± 0.09 N.A. 0.26 ± 0.23 

1c  (mol) 1.0 0.99 ± 0.02 1.00 ± 0.02 0.99 ± 0.02 0.99 ± 0.01 1.05 ± 0.03 

D
1τ  (µs) 100.0 99 ± 2 101 ± 3 94 ± 3 95 ± 1 N.A. 

11q  (kHz/mol) 50.0 49.5 ± 0.7 48.6 ± 0.5 50.8 ± 0.7 N.A. 47.6 ± 0.6 

Parameter values listed as N.A. (not applicable) are not able to be extracted using the listed method. 



 

107

For the single-species simulations, the PAID method performed well; the average 

error for each parameter was at most 2% for both the low and high occupancy 

simulations.  The fitted values for the background levels were factors of 500 and 1700 

below the average count rates of the low and high occupancy simulations, respectively.  

This indicates that the PAID method is able to detect the presence or absence of the 

background.  The parameters for the single diffusing species were also extracted 

correctly.  The diffusion time and brightness parameters extracted by PAID in the low 

Table 3.3: Parameters Extracted using PAID, modified FIMDA, FIMDA, FCS, 
and FIDA for single-channel, two-component simulations in a Gaussian detection 
volume 

Parameters Simulation PAID Fit Modified 
FIMDA Fit FIMDA Fit FCS Fit FIDA Fit 

10 Simulations (30 s each): Low Occupancy ( 1c + 2c =0.1) 

2χ  - 0.77 ± 0.12 0.75 ± 0.12 1.13 ± 0.93 Did not 
converge 0.47 ± 0.24 

01k  (kHz) 2.0 2.00 ± 0.01 2.00 ± 0.01 1.90 ± 0.03  1.99 ± 0.08 

1c  (mol) 0.05 0.048 ± 0.002 0.048 ± 0.002 0.064 ± 0.003  0.059 ± 0.007 

D
1τ  (µs) 100.0 100 ± 7 99 ± 7 117 ± 11  N.A. 

11q  (kHz/mol) 50.0 49.9 ± 4.1 50.2 ± 4.9 50.7 ± 5.2  48.1 ± 7.5 

2c  (mol) 0.05 0.052 ± 0.003 0.052 ± 0.003 0.042 ± 0.005  0.048 ± 0.009 

D
2τ  (µs) 150.0 145 ± 5 146 ± 5 146 ± 8  N.A. 

21q  (kHz/mol) 100.0 98.0 ± 3.2 98.4 ± 3.3 105.7 ± 3.0  99.6 ± 5.2 

10 Simulations (10 s each): Intermediate Occupancy ( 1c + 2c =1.0) 

2χ  - 0.88 ± 0.22 0.58 ± 0.06 0.55 ± 0.06 Did not 
converge 0.65 ± 0.27 

01k  (kHz) 2.0 2.03 ± 0.05 2.05 ± 0.04 1.6 ± 0.5  1.62 ± 0.91 

1c  (mol) 0.5 0.45 ± 0.08 0.43 ± 0.13 0.51 ± 0.12  0.57 ± 0.09 

D
1τ  (µs) 100.0 88 ± 18 95 ± 25 92 ± 16  N.A. 

11q  (kHz/mol) 50.0 52.5 ± 4.4 50.4 ± 5.0 51.5 ± 7.7  45.6 ± 11.3 

2c  (mol) 0.5 0.53 ± 0.07 0.56 ± 0.12 0.50 ± 0.13  0.52 ± 0.14 

D
2τ  (µs) 150.0 153 ± 4 148 ± 10 144 ± 12  N.A. 

21q  (kHz/mol) 100.0 96.4 ± 3.1 94.4 ± 5.6 101.2 ± 6.5  96.9 ± 5.8 
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occupancy simulations may have a 2% 

bias downward (the mean value found for 

these parameters is off by more than 1 3 

of the standard deviation).  The fit for one 

PAID histogram is shown in Fig. 3.7.  The 

fit is within the error bars for almost all of 

the data points (some are outside, which is 

expected for accurately estimated error 

bars). 

PAID also performed well with the 

two-species simulations.  The errors in the 

parameters extracted from the intermediate 

occupancy simulations (3%-20%) are 

larger than those extracted from the low 

occupancy simulations (3%-8%).  For the 

intermediate occupancy simulations, there are biases in the values extracted for the 

concentration and diffusion time of the dimmer species of around 10%. 

It is interesting to compare the performance of PAID with FIMDA, since both 

methods have the same capabilities for the simultaneous extraction of occupancy, 

diffusion time, and molecular brightness for a single channel.  To provide a more direct 

comparison to PAID, the FIMDA histograms were created using the same time bin sizes 

and photon count bins as the PAID histogram (appendix 3.A).  The spacing between each 

counted time interval was set to 10 ms; for longer time bin sizes, a given photon 

Fig. 3.7: One of the fits in table 1 using 
PAID.  The parameters are the same as 
for Fig. 5A.  The PAID histogram for the 
simulation is in A, and the fit is in B.  
Horizontal slices of both are shown in C, 
and vertical slices are shown in D.  The 
slices of the simulation are shown in 
black with error bars, and the slices of 
the fit are shown in red.
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contributes to several counted intervals.  Therefore, each entry into the histogram is not 

independent, and the error bars are determined by forming several histograms and 

calculating the standard deviation [142].  The columns in tables 3.2 and 3.3 labeled 

“modified FIMDA” use our model to extract the parameters from the histograms, and the 

columns labeled “FIMDA” use the original FIMDA model.  With the exception of the 

simulations for the mixture at 

intermediate occupancy, the accuracy of 

the parameters extracted using the 

modified FIMDA model was very 

similar to the accuracy found using 

PAID.  For the mixture at intermediate 

occupancy, the errors found using the 

modified FIMDA model are consistently 

larger than the errors found using PAID 

(except for the background; the errors in 

occupancies are 24% and 26% rather 

than 16% and 14%).  It may be that the 

PAID histogram has better resolving 

power than the FIMDA histogram in this 

regime (additional simulations over a 

wider range of parameter values will be 

needed to verify this, and help discover 

the cause).   

Fig. 3.8: One of the fits in table 1 using 
FIMDA.  The parameters are the same as 
for Fig. 5A.  The PAID histogram for the 
simulation is in A, and the fit using the 
model developed here is in B.  Horizontal 
slices of both are shown in C, and vertical 
slices are shown in D.  The slices of the 
simulation are shown in black with error 
bars, the slices of the fit using our model 
are shown in red, and the slices of the fit 
using the model from Palo et al., 
specialized to the Gaussian detection 
volume with no triplet state, is shown in 
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Some differences were found between fitting the FIMDA histograms with the 

modified FIMDA model and the original model proposed in [130].  For the single-species 

simulations at low occupancy, the accuracy of the extracted values is similar to the 

accuracy found using PAID and modified FIMDA, but 2χ  is significantly higher than 1.  

This comes from the region where time delays are larger than the diffusion time.  The fits 

for one modified FIMDA histogram using the modified FIMDA model and the original 

FIMDA model are shown in Fig. 3.8. It is possible to see in fig. 3.8C and 3.8D the 

deviation of the FIMDA model (green line) from the data (black line).  For the single-

species simulations at intermediate occupancy, the 2χ  is near 1, and the extracted 

parameters are close to the simulation values, except for a 5% downward bias in the 

diffusion time.  The parameters extracted using the FIMDA model for the simulations of 

the mixtures had larger biases than those extracted with the modified FIMDA model.  For 

the low occupancy mixture, the biases in the occupancies were close to 20%.  It 

performed better with the intermediate occupancy simulations (with smaller biases in the 

occupancy values), except that the background count rate values extracted were off by 

25%.  We attribute the increased biases found using the original FIMDA model to the 

assumption made that the functional form of the photon counting histogram changes only 

through changes in effective brightness and effective occupancy.  In the view of the 

original model, at time bins larger than the diffusion time, the effective occupancy is 

increased while the effective brightness is reduced; the detection volume increases in size 

as time passes, but retains the same shape.  This view does not account for the dynamic 

picture, neglecting for example the chance that a molecule re-crosses the detection 

volume.   
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The accuracy of the parameters extracted from the single-species simulations 

using FCS was similar to that found using PAID and FIMDA (except that the brightness 

is not able to be extracted).  The diffusion times found did have a 5% downward bias.  

For the mixture simulations, the FCS fits did not converge in either the high or low 

occupancy simulations.  Significantly different results with the same 2χ  were found with 

the same data set.  This problem arises because FCS relies on only the diffusion time to 

detect the presence of multiple subpopulations.  Even if the subpopulations were detected 

in this case, there would be additional problems.  The background level and the 

brightness of the species must be determined using other methods to extract occupancy. 

Even with this information available, it is still not possible to tell which brightness 

corresponds to which diffusion time.   

The statistical errors of the parameters extracted using FIDA for the single-

species simulations were similar to the errors found using the other methods.  The time 

bin width used for the simulations was chosen to be 1/5 the shortest diffusion time 

(20 µs ).  The short time bin width is necessary since the FIDA model assumes the 

molecules are stationary during the counting interval (this also precludes the extraction of 

diffusion time).  Even with this short time bin, there is some upward bias in the 

occupancies extracted, along with some downward bias in the brightness values extracted 

due to the diffusion of the species during the time bin.  The errors of the parameters 

extracted from the two-species simulations were larger for FIDA than for the other 

methods (for 8 out 10 extracted parameters, FIDA had the largest errors for all of the fits, 

excluding FCS).   
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3.4.2.  Simulations – monitoring binding with two channels 

The use of PAID and cross-correlation FCS in two-channel applications with two 

spectrally separable fluorophores is investigated using multiple species simulations.  

Three species are present (same as introduced in section 3.2.4): free molecules labeled 

with a yellow fluorophore ( A y ), free molecules labeled with a red fluorophore ( Br ), and 

complexes of these two species ( A By r ).  The diffusion time of A By r  is increased by 

33% as compared to A y  and Br , but the brightness of each fluorophore is assumed to be 

unaffected.  As in the single-channel case, there are two occupancy regimes investigated, 

the low and intermediate occupancy regimes.  The simulations for tables 3.4 and 3.5 were 

created with these three subpopulations plus background.  The fluorophore y was set to 

have a total brightness of 50.0 kHz, 90% in channel Y and 10% in channel R .  The 

fluorophore r was set to have a total brightness of 50.0 kHz, 100% in channel R .  The 

background level was set to 0 0 2.0 kHzG Rk k= = .   

Table 3.4 shows the estimated parameters extracted from the simulations with low 

occupancy, and table 3.5 shows the estimated parameters extracted from simulations with 

intermediate occupancy.  The first column lists the parameters of the fit, along with 2χ .  

The second column lists the parameter values for the simulations, which were 30 s long 

for table 3.4 and 10 s long for table 3.5.  For each simulation, three fits were performed.  

The results are in the third, fourth, and fifth columns.  The first fit uses PAID with all 

parameters freely varying.  The second fit also uses PAID, but the parameters for the 

background and free molecules are all fixed, except for the occupancies of the free 

components. For these two PAID fits, all combinations of the two-channel PAID 
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histogram, as listed in table 3.1, are fitted simultaneously.  Because each histogram 

emphasizes different species, this allows the parameters for all species to be extracted.  

The results for these two fits are shown in the third and fourth columns of tables 3.4 and 

3.5.  The third fit uses cross-correlation FCS to simultaneously fit the autocorrelations of 

the red and yellow channels and the two cross-correlations, with all of the brightness 

values and background rates fixed.   

The fit performed using PAID without any restrictions on parameter values 

extracted reliable values (within 1-10% for all parameters in both sets of simulations).  

Table 3.4: Parameters Extracted using PAID and cross-correlation FCS for two-
channel, three-component simulations in a Gaussian detection volume at low 
occupancy 
 

Parameters Simulation PAID Fit - 
Unrestricted PAID Fit - Restricted Cross-correlation FCS 

Fit 

10 Simulations (30 s each): Low Occupancy ( 1c = 2c = 3c =0.05) 

2χ  - 0.72 ± 0.05 0.79 ± 0.07 0.95 ± 0.12 

0Rk  (kHz) 2.0 2.00 ± 0.01 2.0 2.0 

0Yk  (kHz) 2.0 2.00 ± 0.01 2.0 2.0 

1c  (mol) 0.05 0.049 ± 0.003 0.049 ± 0.003 0.050 ± 0.004 

D
1τ  (µs) 300.0 287 ± 21 300.0 296 ± 12 

1Rq  (kHz/mol) 50.0 50.3 ± 1.1 50.0 50.0 

1Yq  (kHz/mol) 0.0 0.05 ± 0.03 0.0 0.0 

2c  (mol) 0.05 0.049 ± 0.003 0.050 ± 0.003 0.050 ± 0.003 

D
2τ  (µs) 300.0 294 ± 21 300.0 291 ± 12 

2Rq  (kHz/mol) 5.0 4.8 ± 0.2 5.0 5.0 

2Yq  (kHz/mol) 45.0 44.8 ± 0.8 45.0 45.0 

3c  (mol) 0.05 0.050 ± 0.003 0.050 ± 0.003 0.051 ± 0.002 

D
3τ  (µs) 400.0 394 ± 17 389 ± 20 385 ± 23 

3Rq  (kHz/mol) 55.0 54.9 ± 0.9 55.2 ± 0.2 55.0 

3Yq  (kHz/mol) 45.0 44.7 ± 0.6 44.8 ± 0.2 45.0 

Values that are fixed are shown in italics, with no errors listed.   
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Unexpectedly, the accuracy of the extracted parameters did not increase dramatically by 

restricting the parameters for the brightness of the free components and the background 

rates (there was an improvement for the brightness values for the complex, but no 

improvement for the diffusion time or for the occupancies). 

The parameters extracted using cross-correlation FCS had similar statistical 

accuracy (in the 4-7% range) to those found using PAID.  The diffusion time values may 

be somewhat better with cross-correlation FCS (the error bars were on average 20% 

smaller), but there are fewer than half as many freely varying parameters.  We fixed all of 

Table 3.5: Parameters Extracted using PAID and cross-correlation FCS for two-
channel, three-component simulations in a Gaussian detection volume at 
intermediate occupancy 
 

Parameters Simulation PAID Fit - 
Unrestricted PAID Fit - Restricted Cross-correlation FCS 

Fit 

10 Simulations (10 s each): Intermediate Occupancy ( 1c = 2c = 3c =0.5) 

2χ  - 0.81 ± 0.05 0.90 ± 0.11 0.76 ± 0.29 

0Rk  (kHz) 2.0 2.02 ± 0.06 2.0 2.0 

0Yk  (kHz) 2.0 2.00 ± 0.05 2.0 2.0 

1c  (mol) 0.5 0.50 ± 0.01 0.49 ± 0.02 0.050 ± 0.02 

D
1τ  (µs) 300.0 320 ± 28 300.0 298 ± 10 

1Rq  (kHz/mol) 50.0 49.1 ± 0.6 50.0 50.0 

1Yq  (kHz/mol) 0.0 0.06 ± 0.07 0.0 0.0 

2c  (mol) 0.5 0.49 ± 0.02 0.49 ± 0.02 0.50 ± 0.03 

D
2τ  (µs) 300.0 306 ± 32 300.0 289 ± 21 

2Rq  (kHz/mol) 5.0 4.9 ± 0.5 5.0 5.0 

2Yq  (kHz/mol) 45.0 44.5 ± 1.2 45.0 45.0 

3c  (mol) 0.5 0.50 ± 0.03 0.49 ± 0.02 0.49 ± 0.02 

D
3τ  (µs) 400.0 395 ± 13 390 ± 19 388 ± 16 

3Rq  (kHz/mol) 55.0 54.3 ± 1.1 55.0 ± 0.8 55.0 

3Yq  (kHz/mol) 45.0 44.5 ± 1.5 45.1 ± 0.5 45.0 
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the brightness and background parameters to their simulation values, and thus were able 

to extract the correct occupancies.  For experiments, it would be necessary to measure the 

background and brightness values using a different method than FCS. 

This analysis demonstrates that it is possible to extract the occupancy, diffusion 

time, and brightness in multiple channels of several species by fitting all of the two-

channel PAID histograms simultaneously.  This provides the ability to perform 

consistency checks between the parameters extracted for the free components in the 

experiment versus the control experiments, and increasing the applicability of FCS-

related methods to areas where precise controls are more difficult to develop.  For 

example, the autofluorescence background in living cells would change as a function of 

position.  It would not be possible to obtain background measurements for a particular 

spatial position in a cell with different fluorescent species present.   

3.4.3.  One-channel experiments 

Measurements were performed on the DNA fragments (described in section 3.3.3) 

to test the ability of PAID to detect subpopulations in solution based on the properties 

available in a single channel.  Three samples were tested in the intermediate occupancy 

regime.  The first contained 1 nM of Cy3-dsDNA, and the second contained 1 nM of 

Cy3-dsDNA-Cy3.  The third contained 1 nM each of Cy3-dsDNA and Cy3-dsDNA-Cy3.  

The concentration of DNA was determined using UV-Vis spectrophotometry (εCy3, 

550=150,000 cm-1M-1; εCy5, 650=250,000 cm-1M-1) and fluorescence spectrophotometry.   
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By assuming that the dsDNA is a rod-like polymer with length 240 ÅL = , and 

diameter 20 Åb = , we calculate the averaged translational diffusion constant using 

[accounting for transverse and longitudinal diffusion; [103]], 

 
( )

B

ln /
.

3
L b

D k T
Lπη

=  (3.11) 

η is the dynamic viscosity of the solution [ 1.16 mPa sη = for an aqueous solution 

containing 5% glycerol (by volume); [150]]. Using these values and 25 °CT = , the 

translational diffusion constant is 7 23.9 10  cm sD −= × .  For the volume described in 

section 3.3.1, these dsDNA fragments have a diffusion time of 710 µsDτ = .  This value 

will be compared to the parameters extracted from experimental data sets. 

Table 3.6 shows the results of fits using PAID for the single-species samples as 

well as the mixture.  For the single-species samples, all parameters are allowed to vary 

except for the background.  The background level was determined in a separate, buffer-

only experiment.   The diffusion times and brightness of each component is then fixed in 

the fit for the mixture.  As mentioned in section 3.3.1, the occupancy of the calculated 

detection volume for a 1 nM sample should be 1.9.  The occupancies extracted from the 

Cy3-dsDNA only sample ( 2.09c = ) and the Cy3-dsDNA-Cy3 only sample ( 3.48c = ) 

provide a test of the size of the confocal detection volume.  The occupancies extracted 

from the two single-species samples are larger than the occupancy ( 1.9c = ) expected 

from the detection volume calculation, perhaps indicating a detection volume larger than 

calculated.  The diffusion times extracted, however, are 10%-30%smaller than expected 

for the dsDNA fragments in the calculated detection volume (710 µs).  Although the error 
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distribution is quite wide (up to 40%), the occupancies extracted from the mixture are 

consistent with the occupancies extracted from the single-species samples.   

3.4.4.  Two-channel experiments 

Measurements were performed on the DNA fragments (described in section 3.3.3) 

to test the ability of PAID analysis to detect subpopulations in solution and to measure 

their properties, as would be necessary in a binding experiment.  The fluorophores used 

were Cy3 (as the yellow fluorophore y ) and Cy5 (as the red fluorophore r ).  The 

concentration of Cy5-dsDNA (1 nM) was determined using UV-Vis spectrophotometry 

(εCy5, 650=250,000 cm-1M-1) and fluorescence spectrophotometry.  The occupancy 

determined using FCS was 1.8, which is lower than the results with Cy3-dsDNA and 

Table 3.6: Parameters Extracted using PAID for 
single-channel, one- and two-component, 
intermediate occupancy experiments 

Parameters Cy3-dsDNA Cy3-dsDNA-Cy3 Cy3-dsDNA, 
Cy3-dsDNA-Cy3 

10 Fits (30 s each): Intermediate Occupancy 

2χ  6.2 ± 0.8 2.6 ± 0.3 0.42 ± 0.16 

01k  (kHz) 1390* 1390 1390 

DNA Fragment 1 Cy3-dsDNA None Cy3-dsDNA 

1c  (mol) 2.09 ± 0.03  2.4 ± 0.9 

D
1τ  (µs) 502 ± 14  502 

11q  (kHz/mol) 12.8 ± 0.2  12.8 

DNA Fragment 2 None Cy3-dsDNA-Cy3 Cy3-dsDNA-Cy3 

2c  (mol)  3.48 ± 0.05 4.2 ± 0.9 

D
2τ  (µs)  630 ± 19 630 

21q  (kHz/mol)  20.8 ± 0.5 20.8 

*Background was determined by an experiment with buffer only 
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Cy3-dsDNA-Cy3 in section 3.4.3.  This is most likely due to the properties of Cy5; when 

performing single-molecule measurements using Cy5 as a FRET acceptor, a large 

percentage of the molecules had non-fluorescent Cy5, a well-known phenomenon 

possibly due to photobleaching [33].  Initial, higher concentration (>10 nM) samples 

were prepared for dsDNA-Cy3 and Cy5-dsDNA-Cy3.  Occupancies and diffusion times 

were extracted using FCS.  Based on the occupancies measured at higher concentration 

and the dilutions used, the occupancies for the intermediate occupancy samples are 

estimated to be 0.85 ± 0.09 for Cy5-dsDNA, 1.15 ± 0.05 for dsDNA-Cy3, and 0.84 ± 

0.03 for Cy5-dsDNA-Cy3.  The occupancies for the low occupancy samples are 10 times 

smaller.  The value for Cy5-dsDNA-Cy3 was found by analyzing the Cy3 fluorescence, 

Table 3.7: Expected occupancies of samples for two-
channel test experiments 

Sample Cy5-dsDNA dsDNA-Cy3 Cy5-dsDNA-Cy3 

Low Occupancy 

1 0.085 ± 0.009   

2  0.115 ± 0.005  

3   0.084 ± 0.003 

4 0.085 ± 0.009 0.115 ± 0.005  

5 0.085 ± 0.009 0.115 ± 0.005 0.084 ± 0.003 

Intermediate Occupancy 

6 0.85 ± 0.09   

7  1.15 ± 0.05  

8   0.84 ± 0.03 

9 0.85 ± 0.09 1.15 ± 0.05  

10 0.85 ± 0.09 1.15 ± 0.05 0.84 ± 0.03 
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so the occupancy quoted includes Cy5-dsDNA-Cy3 and Cy5-dsDNA-Cy3 (with 

photobleached Cy5).   

The fragments were prepared alone and in mixtures, with concentrations 

corresponding to low and intermediate occupancy.  The compositions of the test samples 

are listed in table 3.7; each dsDNA fragment added to a sample is listed with the 

occupancy that is expected to be extracted using PAID.  Samples 1-3 and 6-8 were 

solutions of a single DNA fragment, either Cy5-dsDNA, dsDNA-Cy3, or Cy5-dsDNA-

Cy3.  These correspond to A y , Br , and A By r  in the binding simulations in section 3.4.2.  

Samples 4 and 9 were mixtures of dsDNA-Cy3 and Cy5-dsDNA, which correspond, 

respectively, to the species A y  and Br  in the simulations in section 3.4.2.  Finally, 

samples 5 and 10 were mixtures of dsDNA-Cy3, Cy5-dsDNA, and Cy5-dsDNA-Cy3, 

which correspond to the species A y , Br , and A By r  in section 3.4.2.   

Fig. 3.9 shows PAID histograms for two of the low occupancy data sets: the first 

from the sample with Cy5-dsDNA, dsDNA-Cy3, and Cy5-dsDNA-Cy3 present (Figs. 

3.9A-D), and the second from the sample with only Cy5-dsDNA and dsDNA-Cy3 (Figs. 

3.9E-H).  Figs. 3.9I-L compares vertical slices at time interval 1 msτ =  for the 

histograms in the presence and absence of Cy5-dsDNA-Cy3.  These experimental PAID 

histograms are plotted in the same format as the PAID histograms in Fig. 3.5, which were 

for simulations.  By comparing the Figs. 3.9A-D and Figs. 3.9E-H, it is possible to see 

the effects of the presence of the double-labeled species Cy5-dsDNA-Cy3.   

Figs. 3.9A, 3.9E, and 3.9I use the red channel ( R ) as the start, stop, and monitor 

channels emphasizing Cy5-dsDNA and Cy5-dsDNA-Cy3.  However, it does not 

distinguish well between these species since they both emit approximately equally in the 
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channel R .  The omission of the Cy5-dsDNA-Cy3 decreases amplitude of the correlation 

density peak.  At this low occupancy the background produces the majority of the 

photons, and, in contrast to the typical situation in FCS, a decrease in occupancy 

decreases the correlation amplitude rather than increasing it.   

Fig. 3.9: Two-channel PAID histograms for experiments containing species of labeled 
DNA fragments that correspond to those expected in a binding experiment.  One DNA 
fragment is labeled with Cy5, a red fluorophore, another is labeled with Cy3, a yellow 
fluorophore, and another is labeled with both Cy3 and Cy5.  The histograms chosen 
are the same as in Fig. 5.  In A-D, the red-only, yellow-only, and the dual-labeled 
species are all present.  In E-H, they are absent.  Due to the inactive component of 
Cy5, the occupancy of the dual-labeled species is significantly lower than the other 
species (see table 7 for fits of these data).  Because of this, the peaks corresponding to 
the dual-labeled species are lower than they are in Fig. 5, but they are still visible.   
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In Figs. 3.9B, 3.9F, and 3.9J, the monitor channel is set to channel Y .  This 

configuration emphasizes the same two species, but is able to distinguish between them 

since Cy5-dsDNA does not emit in channel Y  whereas Cy5-dsDNA-Cy3 does. Figs. 

3.9C and 3.9G assign the channel R  as the start channel, the channel Y as the stop 

channel, and the channel R  as the monitor channel.  This configuration emphasizes Cy5-

dsDNA-Cy3.  Without Cy5-dsDNA-Cy3, the peak shown by the arrow in Fig. 3.9C 

disappears.   

Finally, Figs. 3.9D and 3.9H assign the channel Y as the start and stop channels, 

and the channel R  as the monitor channel.  This configuration emphasizes dsDNA-Cy3 

and Cy5-dsDNA-Cy3, separating them by their emission in channel R .  In this case, 

because the occupancy of dsDNA-Cy3 is quite a bit higher than Cy5-dsDNA-Cy3, the 

peak corresponding to Cy5-dsDNA-Cy3 is less pronounced, although it is still 

significant.   

For both the low and intermediate occupancy data sets, 300 s of data were 

collected.  The intermediate occupancy data sets were split into 10 sections of 30 s each.  

PAID histograms were calculated for each of the 10 sections, and the standard deviation 

of each bin was calculated to estimate the error of each bin.  Each section was fit 

separately, and the mean and standard deviation of each fitted parameter is listed in the 

table, as was done for the simulations.   

The same procedure was performed for the low occupancy data sets.  However, 

there were too few bursts from the Cy5-dsDNA-Cy3 and C5-dsDNA fragments.  The 

errors in the diffusion times were too large (on the order of the diffusion time itself).  

Therefore, we fit the histogram of the data for all 300 s in order to obtain better statistics.  
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We used bootstrap sampling to obtain error estimates for the extracted parameters [151].  

We again split the data into 10 sections of 30 s each and randomly selected 10 of these 30 

s sections (with replacement), averaging the PAID histograms for the selected sections.  

We repeated this process 10 times, and fit each of the resulting histograms.  The standard 

deviation of the 10 values extracted for each parameter is quoted as error bars in each 

table for low occupancy data.   

Tables 3.8 and 3.9 show the results of fits for the single-species samples: dsDNA-

Cy3, Cy5-dsDNA, and Cy5-dsDNA-Cy3.  Using the detection volume described in 

section 3.3.1, we obtained fits with 2χ  values in the range 1-10 (ideally 2 1χ ∼ ).  The 

Table 3.8: Parameters extracted using PAID for two-
channel, single-species, low occupancy experiments 
 

Parameters Sample 1, 
Cy5-dsDNA 

Sample 2, 
dsDNA-Cy3 

Sample 3, 
Cy5-dsDNA-Cy3 

1 Fit* (300 s): Low occupancy 

2χ  9.4 ± 0.7 5.5 ± 0.1 1.9 ± 0.3 

0Rk  (kHz) 0.82 ± 0.01 0.76 ± 0.01 0.68 ± 0.01 

0Yk  (kHz) 1.30 ± 0.03 1.14 ± 0.03 0.95 ± 0.01 

DNA Fragment 1 Cy5-dsDNA dsDNA-Cy3 Cy5-dsDNA-Cy3 

1c  (mol) 0.026 ± 0.001 0.073 ± 0.003 0.023 ± 0.003 

D
1τ  (µs) 565 ± 21 570 ± 9 665 ± 64 

1Rq  (kHz/mol) 10.2 ± 0.4 0.94 ± 0.03 0.8 ± 0.1 

1Yq  (kHz/mol) 0.06 ± 0.02 10.0 ± 0.3 9.2 ± 0.8 

DNA Fragment 2 None None Cy5-dsDNA-Cy3 

2c  (mol)   0.012 ± 0.001 

D
2τ  (µs)   650 ± 10 

2Rq  (kHz/mol)   6.8 ± 0.3 

2Yq  (kHz/mol)   6.7 ± 0.3 

 *All 300 s of low occupancy data fit at once to improve statistics 
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discrepancy can be attributed to photophysical properties of the dyes such as triplet state 

fluctuations, saturation of fluorescence, and photobleaching, or to the deviation of the 

experimental detection volume from the modeled volume.  If the Gaussian detection 

volume used for the simulations is used to fit the experimental, significantly higher 2χ  

values are found.  For example, fitting the dsDNA-Cy3 data sets resulted in fits with 2χ  

= 13.1 and 2χ  = 32.5 for the low occupancy and high occupancy data sets, respectively.  

With the more accurate detection volume, the values are 2χ  = 5.5 and 2χ  = 2.2.  This 

highlights the critical role the shape of the detection volume plays in the model.   

 

Table 3.9: Parameters extracted using PAID for two-
channel, single-species, intermediate occupancy 
experiments 
 

Parameters Sample 6, 
Cy5-dsDNA 

Sample 7, 
dsDNA-Cy3 

Sample 8, 
Cy5-dsDNA-Cy3 

10 Fit (30 s): Intermediate occupancy 

2χ  4.7 ± 0.5 2.2 ± 0.3 1.4 ± 0.1 

0Rk  (kHz) 1.30 ± 0.01 0.99 ± 0.01 0.92 ± 0.03 

0Yk  (kHz) 1.33 ± 0.03 1.44 ± 0.01 1.29 ± 0.03 

DNA Fragment 1 Cy5-dsDNA dsDNA-Cy3 Cy5-dsDNA-Cy3 

1c  (mol) 0.68 ± 0.02 1.08 ± 0.04 0.32 ± 0.03 

D
1τ  (µs) 389 ± 24 554 ± 59 703 ± 36 

1Rq  (kHz/mol) 9.4 ± 0.5 0.82 ± 0.03 0.70 ± 0.09 

1Yq  (kHz/mol) 0.02 ± 0.01 9.0 ± 0.4 10.7 ± 0.7 

DNA Fragment 2 None None Cy5-dsDNA-Cy3 

2c  (mol)   0.24 ± 0.02 

D
2τ  (µs)   575 ± 13 

2Rq  (kHz/mol)   7.6 ± 0.4 

2Yq  (kHz/mol)   7.6 ± 0.5 
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Fig. 3.10 shows an example of one of the fits for table 3.10.  It is the histogram 

with S R= , T Y= , and M Y= .  This histogram emphasizes only the species Cy5-

dsDNA-Cy3.  The peak toward higher photon counts in the vertical slice is caused by this 

species.  The fit is usually within the error bars, and follows the data to within 10%. 

The background rates, 

occupancies, diffusion times, and 

brightness in each channel were free 

parameters.  To fit the data for the Cy5-

dsDNA-Cy3 fragment in samples 3 and 8, 

two components were necessary, one with 

Cy3 only and another with Cy3 and Cy5 

(due to the photobleached or non-

fluorescent Cy5).  When parameters 

corresponding to Cy5-dsDNA were added, 

there was only a small occupancy fitted 

(~0.001, not shown).   

The results for samples 4, 5, 10, 

and 11 (composed of mixtures of DNA 

fragments) are shown in tables 3.10 and 

3.11.  The dsDNA-Cy3 and Cy5-dsDNA mixture simulates non-interacting species in 

solution, and the dsDNA-Cy3, Cy5-dsDNA, and Cy5-dsDNA-Cy3 mixture simulates an 

interacting species in solution.  For each sample, we show two fits using PAID.  The first 

fit assumes the correct number of species, but allows all of the parameters to freely vary.  

Fig. 3.10:  One of the fits in table 3.10 
using PAID.  It is the histogram 
with S R= , T Y= , and M Y= .  The 
PAID histogram for the simulation is in 
A, and the fit is in B.  Horizontal slices of 
both are shown in C, and vertical slices 
are shown in D.  The slices of the 
simulation are shown in black with error 
bars, and the slices of the fit are shown in 
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The second fit uses the single-species parameters already extracted to restrict the 

parameters for the free components, except for occupancy. These fits allow us to show 

that a sample with two species can be distinguished from a sample with three species, as 

is necessary for a binding experiment. 

Table 3.10: Parameters extracted using PAID for two-channel, multiple-
species, low occupancy experiments 
 

Parameters 

Sample 4 
dsDNA-Cy3, 
Cy5-dsDNA 
Unrestricted 
2 component 

Sample 4 
dsDNA-Cy3, 
Cy5-dsDNA 

Restricted 
3 component 

Sample 5 
dsDNA-Cy3, 
Cy5-dsDNA, 

Cy5-dsDNA-Cy3, 
Unrestricted 
3 component 

Sample 5 
dsDNA-Cy3, 
Cy5-dsDNA, 

Cy5-dsDNA-Cy3, 
Restricted 

3 component 

1 Fit (300 s): Low occupancy 

2χ  2.8 ± 0.2 34 ± 2 2.3 ± 0.4 12 ± 1 

0Rk  (kHz) 0.87 ± 0.01 0.71 0.80 ± 0.01 0.71 

0Yk  (kHz) 1.04  ± 0.01 1.15 1.12 ± 0.01 1.15 

DNA Fragment 1 Cy5-dsDNA Cy5-dsDNA Cy5-dsDNA Cy5-dsDNA 

1c  (mol) 0.018 ± 0.001 0.028 ± 0.001 0.011 ± 0.001 0.027 ± 0.001 

D
1τ  (µs) 430 ± 9 565 357 ± 4 565 

1Rq  (kHz/mol) 11.0 ± 0.2 10.2 15.4 ± 0.4 10.2 

1Yq  (kHz/mol) 0.01 ± 0.02 0.06 0.02 ± 0.03 0.06 

DNA Fragment 2 dsDNA-Cy3 dsDNA-Cy3 dsDNA-Cy3 dsDNA-Cy3 

2c  (mol) 0.068 ± 0.001 0.065 ± 0.001 0.077 ± 0.003 0.085 ± 0.001 

D
2τ  (µs) 526 ± 5 570 571 ± 13 570 

2Rq  (kHz/mol) 0.95 ± 0.02 0.94 0.89 ± 0.02 0.94 

2Yq  (kHz/mol) 10.2 ± 0.1 10.0 11.2 ± 0.3 10.0 

DNA Fragment 3 None Cy5-dsDNA-Cy3 Cy5-dsDNA-Cy3 Cy5-dsDNA-Cy3 

3c  (mol)  0.001 ± 0.001 0.015 ± 0.002 0.014 ± 0.001 

D
3τ  (µs)  650 684 ± 35 650 

3Rq  (kHz/mol)  6.8 7.3 ± 0.7 6.8 

3Yq  (kHz/mol)  6.7 6.8 ± 0.3 6.7 

* Includes contributions from Cy5-dsDNA-Cy3 
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The occupancies extracted (shown in tables 3.8-3.11) are less than those estimated 

in table 3.7.  For the single-species, low occupancy data (table 3.8), the extracted 

occupancies were 35%-70% lower than expected, whereas for the single-species, 

intermediate occupancy samples, they are 4%-20% lower than expected (note that in 

comparing the occupancies for the Cy5-dsDNA-Cy3 samples with table 3.7, the 

Table 3.11: Parameters extracted using PAID for two-channel, 
multiple-species, intermediate occupancy experiments 
 

Parameters 

Sample 9 
dsDNA-Cy3, 
Cy5-dsDNA 
Unrestricted 
2 component 

Sample 9 
dsDNA-Cy3, 
Cy5-dsDNA 

Restricted 
3 component 

Sample 10 
dsDNA-Cy3, 
Cy5-dsDNA, 

Cy5-dsDNA-Cy3, 
Unrestricted 
3 component 

Sample 10 
dsDNA-Cy3, 
Cy5-dsDNA, 

Cy5-dsDNA-Cy3, 
Restricted 

3 component 

10 Fits (30 s each): Intermediate occupancy 

2χ  1.8 ± 0.1 3.0 ± 0.5 3.0 ± 0.3 4.8 ± 0.7 

0Rk  (kHz) 1.4 ± 0.1 0.71 1.66 ± 0.02 0.71 

0Yk  (kHz) 1.44± 0.01 1.15 1.3± 0.1 1.15 

DNA Fragment 1 Cy5-dsDNA Cy5-dsDNA Cy5-dsDNA Cy5-dsDNA 

1c  (mol) 0.43 ± 0.03 0.57 ± 0.02 0.37 ± 0.03 0.74 ± 0.03 

D
1τ  (µs) 353 ± 23 389 356 ± 33 389 

1Rq  (kHz/mol) 11.0 ± 0.4 9.4 14.5 ± 1.1 9.4 

1Yq  (kHz/mol) 0.20 ± 0.09 0.02 0.3 ± 0.2 0.02 

DNA Fragment 2 dsDNA-Cy3 dsDNA-Cy3 dsDNA-Cy3* dsDNA-Cy3* 

2c  (mol) 0.86 ± 0.02 0.96 ± 0.02 1.0 ± 0.2 1.56 ± 0.03 

D
2τ  (µs) 559 ± 25 554 503 ± 44 554 

2Rq  (kHz/mol) 0.75 ± 0.05 0.82 0.5 ± 0.2 0.82 

2Yq  (kHz/mol) 9.8 ± 0.4 9.0 11.5 ± 0.9 9.0 

DNA Fragment 3 None Cy5-dsDNA-Cy3 Cy5-dsDNA-Cy3 Cy5-dsDNA-Cy3 

3c  (mol)  0.01 ± 0.01 0.58 ± 0.15 0.22 ± 0.03 

D
3τ  (µs)  575 451 ± 10 575 

3Rq  (kHz/mol)  7.6 5.3 ± 1.1 7.6 

3Yq  (kHz/mol)  7.6 6.4 ± 0.4 7.6 

* Includes contributions from Cy5-dsDNA-Cy3
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occupancies for Cy5-dsDNA-Cy3 and Cy5-dsDNA-Cy3 are added). The difference 

between the extracted and estimated occupancies may be due to sticking of the DNA to 

the coverslip or to the walls of tubes during handling (this issue arises more often at low 

concentrations).  The diffusion times extracted for the Cy5-dsDNA-Cy3 and dsDNA-Cy3 

fragments are similar to what is expected from the calculation in section 3.3.3 (554-703 

µs compared to 710 µs).  The diffusion times for the Cy5-dsDNA fragments tend to be 

shorter (389-565 µs).  This is likely due to photobleaching of Cy5 within the confocal 

detection volume.   

The occupancies extracted from the mixture samples using the restricted fits were 

consistent with the occupancies extracted from the single-species samples (within 16%).  

The fits for the low occupancy data sets, however, had high values for 2χ  (12 and 34), 

indicating significant deviations from the model.  These could result from the model for 

the detection volume or to fluctuations in the laser excitation power. 

For the unrestricted fits of the low occupancy data, the occupancies extracted for 

the dsDNA-Cy3 and Cy5-dsDNA-Cy3 fragments are consistent with the values obtained 

using the restricted fits.  However, the occupancies extracted for the Cy5-dsDNA 

fragments are significantly smaller (35%-65%).  There is a compensating increase in the 

brightness extracted for these fragments in channel R .  For the unrestricted fits of the 

high occupancy data, the occupancies for the Cy5-dsDNA were again smaller (25%-

50%), and there were compensating increases in the brightness in channel R .  The 

occupancies extracted using the unrestricted fit from the dsDNA-Cy3 and Cy5-dsDNA-

Cy3 fragments in sample 10 are different from those obtained with the restricted fit (a 

33% decrease and a 160% increase).  With the unrestricted fits, the diffusion times 
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extracted for the Cy5-dsDNA-Cy3 and dsDNA-Cy3 fragments are similar to what is 

expected from the calculation in section 3.3.3 (451-684 µs compared to 710 µs).  The 

diffusion times for the Cy5-dsDNA fragments tend to be shorter (353-430 µs), again 

likely due to photobleaching.  The consistency found in the brightness values is quite 

good (typically within 10%; worst case 50%).   

These fits show how it is possible to obtain coincidence information, occupancy, 

brightness, and diffusion time of several sources in an experimental data set through the 

use of the PAID histogram.  Control experiments can be used to restrict values for many 

parameters, increasing the confidence level in the remaining fitted parameters.   
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3.5. Conclusion 

The PAID histogram is a data presentation and analysis method that allows 

simultaneous extraction of information about diffusion, brightness, and coincidence 

between multiple channels from a single data set.  The use of the PAID histogram for 

cross-correlation studies was studied by extracting parameters from simulated data sets 

using non-linear least squares fitting based on the PAID model.  The parameters extracted 

agreed well with the simulation parameters.  A series of experimental data sets was used 

to extract the same parameters as from the simulations.  These fits show how it is 

possible to obtain coincidence information, occupancy, brightness, and diffusion time of 

several sources in a data set through the use of the PAID histogram.   

The photon-based histogram design used in developing PAID can be pursued 

further.  The one-monitor channel histograms used in this paper can be extended to use 

two monitor channels to improve sensitivity.  Addition of multiple stop channels can 

extend higher-order correlation functions (useful for investigating non-Markovian 

properties) to include information on brightness.  By performing the FCS experiments in 

conjunction with time-correlated single photon counting (TCSPC), each photon will be 

stamped with the sub-nanosecond resolution time delay between the excitation laser pulse 

and the fluorescence photon.  This information can be attached to the start photon, 

spreading the PAID histogram into the lifetime dimension.  The lifetime of the 

fluorophore can then be tracked as a function of the time interval between the start and 

stop photons. 
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The model developed here is flexible, and will be extended to include 

photophysical properties of the dyes such as triplet state induced blinking, singlet and 

triplet state saturation, and photobleaching.  As pointed in section 3.4.4, an accurate 

detection volume is critical to the performance of the PAID model.  Therefore, it will be 

important to measure the detection volume and study how this affects the PAID function 

model.  This will improve confidence that any deviations from the fits are due to 

additional dynamics or sub-populations not assumed in the fit. The model will be 

extended to account for two monitor channels to take advantage of the improved ability 

to separate subpopulations.  We have only modeled diffusion dynamics up to now.  

However, conformational dynamics can also be probed using PAID in combination with 

FRET.   

The model developed for PAID assumes that the molecules are diffusing freely in 

solution.  PAID is not limited to this configuration.  It can be applied in cellular 

environments, on immobilized molecules, or in situations with flow.  First, however, the 

application of PAID to monitoring macromolecular interactions for samples freely 

diffusing in solution will be pursued. Especially important will be a demonstration of the 

extraction of stoichiometry in a sample that undergoes aggregation or oligomerization, 

and of the extraction of binding constants.   
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Appendices 

3.A. Bin specification and normalization for PAID histogram 

When forming a PAID histogram for the large number of photons obtained in 

fluorescence fluctuation experiments, it is more meaningful to place events in bins than to 

make a scatter plot.   In choosing the size and spacing of bins, one needs to consider that 

fluorescence dynamics occur over a large range of time scales.  To cover a large range of 

time scales with a minimum number of histogram bins, logarithmic or quasi-logarithmic 

time bins are commonly used in FCS experiments.  For the PAID histogram, we choose 

the bins for the time interval τ  axis to be logarithmically spaced, with 10 bins per 

decade.  To use a logarithmic scale for the monitor photon axis is more problematic 

(especially at low photon counts) since the number of monitor photons that arrive is 

strictly an integer.  The clock time resolution t∆  can be chosen small enough to make the 

integer nature of the discrete time interval variable
t
τ =  ∆ 

τ  negligible in the 

microsecond regime, but this cannot be done with the number of monitor photons 

counted.  Unless one is willing to use a spacing of bins that is extremely sparse (factors of 

2,3,4…), the discrete spacing of the number of monitor photons will cause logarithmic 

bins to be inconsistently occupied at lown ; some bins may not even have an integer in 

them.  So, we use the quasi-logarithmic scale that is used in the multiple tau correlation 

technique for the time interval axis instead for the monitor photon count axis [152, 153].  

That is, the first 16 bins are evenly spaced with increments of 
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1, ( ) ( )1 16, , 0,1, ,15=n n… … .  Then with each set of 8 bins, one doubles the increment.  

The next 8 bins are ( ) ( )17 24, , 16 17,18 19, ,30 31= − − −n n… …  with an increment of 2, 

followed by ( ) ( )25 32, , 32 35,36 39, ,60 63= − − −n n… …  with an increment of 4, etc.  On 

the large scale these bins are logarithmically spaced, while on the small scale they are 

linearly spaced.  In this way, we can cover a large dynamic range of integers in a 

consistent manner with a small number of bins.   

After placing events in the histogram bins, normalization is necessary to 

obtain ( ),STMC τ n .  First, the histogram is multiplied by the factor 
S TN N
T  in Eq. (3.8).  

Second, for a bin that has time interval axis limits lowτ  and highτ  and monitor photon axis 

limits that include the integers lown  through highn , we divide by the size of the 

bin ( )( )high low high low 1− − +τ τ n n .  The value for the bin is then an average of ( ),STMC τ n  

over the bin limits, rather than an integral over the bin limits. This normalizes the 

histogram, giving us ( ),STMC τ n .  However, it is not an ideal representation for a 

logarithmic scale: when plotting a slice of the histogram in the logarithmic scale of the 

monitor photon count axis, for a constant time interval, we would like the actual area 

under the curve to correspond to the value of the correlation ( )STC τ .  To do this, we 

approximate the photon monitor variable n  as a continuous variable n , then convert to a 

logarithmic scale using the expression 10log nζ = .  We want to keep the relation in (3.9) 

valid in the new variable.  We approximate the sums over n  as integrals over a 

continuous variable n , and convert to the logarithmic variableζ :  
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By looking at the differentials, we find that by changing variables from n  to ς  we 

change amplitude of the PAID by a factor ( )ln10 n .  So, the histogram bins are in addition 

weighted by a factor of ( 0.5) ln10+n .  We add 0.5  because we consider each bin in n  as 

covering a range between n  and 1+n , and the average over this range is 0.5+n .  This 

only makes a difference at low n , and causes the 0n = bin to be weighted by the factor 

0.5 rather than 0 . 
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3.B. Algorithms for constructing PAID histograms 

For the PAID method to be practical, it is important to use an efficient way to 

form the PAID histograms from photon streams.  The most straightforward algorithm is 

to compare each photon from the start channel with each photon in the stop channel, then 

calculate how many monitor photons fall between each start and stop photon.  If there are 

SN  photons in the start channel, and TN  photons in the stop channel, then there are 

S TN N∼  entries into the histogram.  This makes the algorithm ( )2O N , which prevents 

the use of a large dynamic range in the PAID histogram.  (It is possible to compare only 

the first stop photons for each start photon, but this would limit the dynamic range.) 

A more efficient algorithm can be developed if we take advantage of the 

logarithmic spacing of the time interval 

bins aτ  and the quasi-logarithmic spacing of 

the monitor photon count bins bn  used in 

the PAID histogram.  The procedure is 

illustrated in Fig. 3.11.  The start, stop, and 

monitor channel photon streams are shown 

in Fig. 3.11A.  There is a filled square 

placed at the integer-valued time of arrival 

of each detected photon, S
it .  The time 

interval and monitor photon count bins corresponding to the first start photon, denoted by 

the arrow at the top, are shown.  The time interval bins, spaced logarithmically with 

Fig. 311: Efficient formation of 
two-dimensional PAID histograms 
with logarithmic time interval axis 
and quasi-logarithmic monitor 
photon count axis (see text).   
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integer time intervals 2,4,8,16,…, are shown as gray and white bands below the start 

channel photon stream.  The monitor photon count bins, spaced logarithmically with 

monitor photon counts 1,2,4,,… are shown as gray and white bands below the monitor 

channel photon stream.  The gray and white bands below the stop photon channel show 

how the time interval and monitor photon count bins combine to form the two-

dimensional histogram bins.  Each bin is labeled with the number of stop photons 

counted within the bin.  These values are then transferred to the two-dimensional PAID 

histogram in Fig. 3.11B.  The procedure to perform this algorithm is as follows: 

1. Consider each start photon arrival time S
it .   Search for the photons in the stop 

channel and monitor channel that are closest to this time. 

2. Set the current time interval ( )τ bin to curra 1= , and the current monitor photon 

count ( )n  bin to currb 1= . 

3. Calculate the time interval Mτ  at which the monitor channel switches to the next 

monitor count bin currb 1+ . 

4. If this time interval Mτ  is less than the time interval of the ( )th
curra 1+ τ  bin, 

perform a binary search on the stop channel to find the photon arriving just after 

the time Mτ , to determine how many stop photons arrive in the current bin.  Add 

these to the ( )curr curra , b  bin of the histogram, advance curr currb b 1= + , and go back 

to step 3. 

5. Otherwise, Perform a binary search on the stop channel to find how many stop 

photons arrive up to the time of the ( )th
curra 1+ τ  bin.  Add these to the 
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( )curr curra , b  bin of the histogram and advance curr curra a 1= + .  Go back to step 3, 

unless there are no more stop photons or ( )curr curra , b  is outside of the histogram.   

6. Go back to step 1 unless there are no more start photons. 

This algorithm takes advantage of the fact that the start, stop, and monitor channels are 

ordered lists (each successive photon is at a later time) by performing binary searches.  A 

modified search algorithm that uses increments of increasing size from the initial search 

index to bracket the desired value before performing a standard binary search was found 

to be most effective (see description of hunt in [154].)  Also, because of the logarithmic 

spacing on both axes, a small number of binary searches can cover a large dynamic 

range.  The algorithm is extendable to multiple monitor channels.   
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3.C. Development of model for PAID 

We develop a model of the PAID function for several species of diffusing 

molecules with a Poisson background in a tightly focused laser excitation volume.  The 

PAID function is expressible in terms of the photon counting probability distributions and 

the PAID function for single molecules.  The photon count probability distribution and 

the PAID function for single molecules are expressed in terms of four path integrals, 

which we estimate using Monte Carlo simulations of diffusion paths.  These path 

integrals need only be calculated once; changes in the diffusion time and brightness 

parameters can be accounted for by a scaling law.  This means that, although the model is 

not expressed in closed form, it can still be used in a fitting routine. 

Precise definitions of the effective detection volume effV  and the brightness per 

molecule in detector channel A , Aqα  are needed.  As a function of a molecule’s spatial 

position, [ ], ,x x y z= , neglecting intersystem crossing to triplet states and assuming that 

the fluorescence lifetime is zero, the rate of photons ( )A xαλ coming from a fluorescent 

molecule of species α  is  

 ( ) ( ) ( )0 Exc CEF .A Ax I d x xα α α αλ σ ϕ=  (3.13) 

0I is the excitation intensity at the center of the confocal volume,  ασ is the absorption 

cross-section of the fluorophore, αϕ is the quantum efficiency of the fluorophore, and 

Adα is the detection efficiency at the center of the confocal volume for detector A . These 

can be grouped into one parameter 0
0A Aq d Iα α α ασ ϕ= , the brightness at the center of the 
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confocal volume for detector A .  ( )Exc x  is the excitation profile of the laser beam, and 

( )CEF x  is the collection efficiency function of the collection optics [145].  If there is 

more than one laser source, then ( )Exc x  may be different for each.  ( )CEF x in general 

varies as a function of detection wavelength.  For simplicity, we use the same ( )Exc x  

and ( )CEF x  for each excitation and each detection wavelength. We will account for 

these effects in future analyses.  The detectivity is defined as the product of the excitation 

and detection efficiency profiles ( ) ( ) ( )Exc CEFx x xφ ≡ .  For simulations, we assume a 

Gaussian detectivity, ( ) ( )2 2 2 2 2exp 2 / 2 /x x y z lφ ω = − + −  , where ω is the 21 e  width 

of the confocal volume in the x and y directions, and l is length of the volume in the 

z direction.  For the experiments, we use the confocal detection volume for the oil 

immersion objective described in section 3.3.1.  With the new definitions, Eq. (3.13) can 

be written 

 ( ) ( )0 .A Ax q xα αλ φ=  (3.14) 
 

The brightness per molecule Aqα  is defined as the average photon count rate in 

detector channel A  over the detection profile ( )xφ , 

 
( ) ( )
( )

( )
( )

2
0 ,A

A A

x x dV x dV
q q

x dV x dV
α

α α

λ φ φ

φ φ
= =∫ ∫

∫ ∫
 (3.15) 

where dV dxdydz=  is an infinitesimal volume element.  For the Gaussian detection 

profile, this equation reduces to
0

3 22
A

A
qq α

α = .   

The effective detection volume is defined as in [27, 118, 120]: 
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∫

 (3.16) 

For the case of the Gaussian detection volume above, this equation becomes 3 2 2
effV lπ ω= .  

With this definition, Eq. (3.14) is now written  

 ( ) ( ) ( )
( )eff .A A

x
x q V

x dVα α

φ
λ

φ
=

∫
 (3.17) 

 

The occupancy cα  is the average number of molecules of species α  within the 

detection volume.  If there are αN  molecules of the diffusing species 0α >  in solution, 

and the volume of the solution is sol effVV , then the following relationship with the 

occupancy cα holds,
sol eff

c
V

α α=
N
V

.   

The density of molecules as a function of spatial position for species α  

is ( )
eff

cx
V

α
αρ = .  To calculate the average count rate from diffusing speciesα , we 

integrate the density of molecules multiplied by the intensity as a function of spatial 

position,  

 ( ) ( ) .A A Ak x x dV c qα α α α αρ λ= =∫  (3.18) 

The average count rate Akα from a diffusing species α  in detection channel A  is the 

product of the occupancy cα and the average brightness Aqα .  The total average count rate 

in detector A  is the sum of the average rate of photons of all species and background 

 0
1

.
N

A A Ak k kα
α=

≡ +∑  (3.19) 

Average intensities are denoted by k , and instantaneous intensities are denoted byλ . 



 

140

3.C.1. Spatial distribution of molecules upon detection of start photon 

The first step in modeling the PAID function is to obtain expressions for the 

spatial distribution of the fluorescent molecules at the time a start photon is received.  At 

the time a start photon arrives from a diffusing source 0α >  (defined as time 

interval 0τ = ), the molecule that emitted the photon is inside the effective detection 

volume, meaning that the spatial probability distribution for that molecule matches the 

excitation-detection volume.  This can be seen as follows.  Consider the intensity in the 

start detection channel of a molecule of species α  as a function of spatial position, 

( )S xαλ , given by Eq.(3.17) while specifying the detector channel A S= .  The probability 

that a start photon is received from the molecule at a specific spatial position is directly 

proportional to the intensity in the start detection channel of the molecule at that position.  

So, the probability distribution ( )corr
h xαP for the position of a molecule of species α  when 

it emits a photon can be obtained by dividing the intensity ( )S xαλ  by its integral over all 

space, 

 ( ) ( )
( )

( )
( )

corr ,S

S

x x
x

dV x dV x
α

α
α

λ φ
λ φ

= =
∫ ∫

P  (3.20) 

where dV dxdydz= is an infinitesimal volume element.  This expression assumes that 

there is no triplet state saturation, and that there is no significant diffusion within the 

fluorescence lifetime.  The superscript “corr” means correlated, signifying that the 

subsequent photons coming from this molecule are correlated with the start photon.   

In contrast, the molecules of a diffusing species 0α >  that did not emit the start 

photon are equally likely to be anywhere in the solution at 0τ = , so the probability 

distribution for these molecules is 
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 ( )unc

sol

1 .xα =P
V

 (3.21) 

The superscript “unc” means uncorrelated, signifying that the photons coming from these 

molecules are uncorrelated with the start photon.   

3.C.2. Calculation of the cross-correlation 

The cross-correlation measures the average rate of photons received in the stop 

detection channel T  upon receiving a photon in the start detection channel S , normalized 

by the average count rate in the stop detection channel.  As the main task in calculating 

the cross-correlation, we obtain the average rate of receiving stop photons from a source 

β  a time interval τ  after receiving a start photon from sourceα , ( )S Tkα β τ→ .  This is the 

rate averaged over all possible initial spatial positions as well as all possible later spatial 

positions.  Although this will allow us to calculate the cross-correlation function, it will 

not allow us to calculate the PAID function without the further development of the theory 

in the next few sections.  To obtain the total density of molecules of a species β  at time 

interval 0τ = , upon receiving a start photon from a molecule of speciesα , we add the 

“correlated” and “uncorrelated” components:  

 ( ) ( ) ( ) ( )corr unc, 0 , 0 , , 0S x x xα β α β βρ τ τ α β τ→ = = = + =δP N P  (3.22) 

The second term on the right is the contribution of the βN  molecules of species β  that 

did not emit the photon.  Ifα β= , then the molecule that emitted the photon gives the 

contribution indicated in the first term on the right, and there are 1β −N  uncorrelated 

molecules.  Since 1βN , we approximate 1β β− ≈N N . 
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In order to obtain the cross-correlation from this initial distribution, the density of 

molecules at a later time can be calculated by integration against the Green’s function for 

three-dimensional diffusion of species β  [146], 

 ( ) ( ) ( )2
3 2 0

0, 4 exp .
4
x x

g x x D
Dβ β

β

τ π τ
τ

−  −
= − 

  
 (3.23) 

 
The resulting density of molecules as a function of the spatial variables x  and time 

interval τ is  

 ( ) ( ) ( )0 0 0, , 0 , ,S Sx dV x g x xα β α β βρ τ ρ τ τ→ →= =∫  (3.24) 

or substituting Eqs. (3.20)-(3.22), and simplifying, 

 ( ) ( )
( ) ( )

( )
0 0 0

eff 0 0

,
, , ,S

dV x g x xc
x

V dV x
ββ

α β

φ τ
ρ τ α β

φ→ = + ∫
∫

δ  (3.25) 

The total count rate on the stop detector T  for photons coming from molecules of species 

β  given that the start photon was from speciesα , ( )S Tkα β τ→ , is equal to the integral over 

space of the number density for molecules of species β  multiplied by the intensity in the 

stop photon stream of a molecule of species β  as a function of spatial position ( )T xβλ : 

 ( ) ( ) ( ), .S T S Tk dV x xα β α β βτ ρ τ λ→ →= ∫  (3.26) 

Using Eq. (3.17) and Eq. (3.25), this expression becomes  

 ( ) ( )
( ) ( ) ( )

( )
0 0 0

2
0

,
, .S T T T

dV x dV x g x x
k k q

dV x
β

α β β β

φ φ τ
τ α β

φ→ = + ∫ ∫
∫

δ  (3.27) 

The first term is the contribution of the uncorrelated molecules of species β  that did not 

emit the start photon.  The second term is the contribution of the molecule that emitted 

the photon, ifα β= .  This expression is valid for all diffusing species , 0α β > .  If the 
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start photon came from the background process so that 0α = , there is no difference 

between the count rate at an arbitrary time t  and at the moment the start photon is 

received.  So, for 0β = , the source α  of the start photon does not matter, 

 ( )0 0S T Tk kα τ→ =  (3.28) 

For 0β > , Eq. (3.27) is still valid if the start photon is from the background source, 0α = .   

Equations (3.27) and (3.28) give us the average count rate in the stop detector 

channel T  given that a photon was received in the start detector channel S  from 

sourceα .  These can be used to calculate the cross-correlation function by summing 

( )Tkαβ τ over all sources β , as well as all possible sources α  for the start photon.  Each 

term is weighted with the count rate of each source α  in the start detector channel S , Skα .  

To normalize the result, we divide by the product of the total count rate in the start 

channel Sk  multiplied by the total count rate in the stop channel Tk , as in Eq. (3.3).  This 

gives us the cross-correlation function for channel S  and channelT ,  

 ( )
( )

0 0

M M

S S T

ST
S T

k k
C

k k

α α β
α β

τ
τ

→
= ==
∑∑

 (3.29) 

 
If a Gaussian detection volume is used for the detectivity ( )xφ , the standard formulas for 

FCS are recovered. 

While the above arguments using the density of molecules provide the correlation 

function, they will not be sufficient to calculate the PAID function ( )CSTM τn .  The initial 

density of molecules given by Eq. (3.22) is still correct, but the information contained in 

the density of molecules is not sufficient to determine the distribution of correlation in the 
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monitor photon count axisn .  To be able to model the PAID function, it is necessary to 

know the history of the molecules, the possible diffusion paths of the molecules.  

3.C.3. Photon count probability distribution for a single path of a single molecule 

Before calculating the PAID function, we obtain the photon count probability 

distribution for the monitor detection channel given that a start photon was received from 

a molecule of species α  at time interval 0τ = .  A possible diffusion path l of a molecule 

in solution is defined by its spatial position as a function of time 

intervalτ , ( ) ( ) ( ) ( ), ,l l l lx x y zτ τ τ τ=    .  S  is defined as the set of all possible paths l  

from all starting positions at time interval 0τ =  to all ending positions at time intervalτ .  

At time interval 0τ = , the probability distribution for the initial position is given by Eq. 

(3.20) for the molecule from species α  that emitted the start photon 

( )( ) ( )( )corr0 0l lx xα=P P  and by Eq. (3.21) for the molecules of species β  that did 

not, ( )( ) ( )( )unc0 0l lx xβ=P P .  Each of the expressions for photon count probability 

distributions in this section and the following section can be applied to both correlated 

and uncorrelated molecules, so we omit the superscript “corr” or “unc”.    When we 

discuss the combination of the distributions of all molecules, these superscripts will be 

present.  For species β , the probability for the whole path up to time interval τ is given 

by the following expression (following Eq. 8 in [155]):  

 

( )
( )

( )( )

( )( )
( )

21

3 20
0

2

lim 0 exp
44

0 exp
4

h h
l ll

l
h dV

l
l

x xdxl x
DD

x
x d

D

τ τ

β τ
ββ

β

τ
τπ τ

τ
τ

+∆

∆ →
=

    −   = −   ∆∆     
    = − 
  

∏ ∫

∫

P P

P

 (3.30) 
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To specify that correlated paths are used, we add a superscript “corr”.  To specify that 

uncorrelated paths are used, we add instead a superscript “unc”.  The probability for the 

path l  is obtained by multiplying the probability density for the initial position by the 

transition probability to every subsequent position spaced by a time interval τ∆ .  The 

transition probability is the Green’s function for three-dimensional diffusion given in Eq. 

(3.23).   

The intensity in the monitor detector channel M  for the molecule of species β  as 

a function of time is found using Eq.(3.17),  

 ( ) ( ) .Ml M lxβ βλ τ λ τ=     (3.31) 

This expression translates, for a path l , a diffusion path into an intensity path.  Note that 

this expression gives the instantaneous intensity at the spatial positions along a diffusion 

path, not the intensity averaged over all possible spatial positions as was used in the 

previous section.   

For a given path l  of one molecule, the probability that n  photons have been 

received at a time interval τ  in detection channel M  is ( )1P Mlβ τn .  The 1 indicates that 

it is for a single molecule.  We take a differential equation-based approach to obtain the 

distribution of photon counts, modified from [156], which contains the same information 

as the approach in [157].  The differential equation governing the time evolution of 

( )1P Mlβ τn  is: 

 
( ) ( ) ( ) ( ) ( )

1
1 1P
P 1 P .Ml

Ml Ml Ml Ml
β

β β β β

τ
λ τ τ λ τ τ

τ
∂

= − −
∂

n
n n  (3.32) 

This equation gives the rate of change in the probability that n  photons have been 

detected at a timeτ .  The first term on the right gives the increase in this probability due 
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to a photon detected when 1−n  had previously been received.  The rate of such photons 

is given by multiplying the total count rate ( )Mlβλ τ  by the probability to have detected 

1−n  photons, ( )1P 1Mlβ τ−n .  The second term gives the decrease in the probability to 

have detected n  photons due to a photon detected when n  had previously been detected.   

The rate of such photons is given by multiplying the total count rate ( )Mlβλ τ  by the 

probability to have detected n  photons, ( )1P Mlβ τn .  The initial conditions 

are ( )1P 0 0 1Mlβ τ= = =n , and ( )1P 0 0Mlβ τ = =n  for all 0≠n .  Equation (3.32) is an 

infinite series of coupled first order differential equations.  By solving these equations 

using, for example, the generating function ( ) ( )1 1

0
G PMl Mls sβ βτ τ

∞

=

=∑ n

n
n  we obtain the 

Poisson distribution: 

 ( ) ( )
( )

( )( )

1P exp
!

Poi , ,

Ml
Ml Ml

Ml

β
β β

β

τ
τ τ

τ

 Λ  = −Λ 

≡ Λ

n

n
n

n

 (3.33) 

where we call  

 ( ) ( )
0

dMl Ml

τ

β βτ λ τ τ′ ′Λ ≡ ∫  (3.34) 

 
the cumulative intensity.  The photon count probability distribution at a time τ  for a 

particular path depends only on the cumulative intensity ( )Mlβ τΛ , which depends on the 

history of the intensity path in a way not seen with the cross-correlation in the previous 

section.  There, the evolution of the instantaneous spatial probability distribution was 

sufficient to calculate the correlation function.  Here, we need to know not only the 
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probability distribution for where the molecules are at the time intervalτ , but where they 

have been since the start photon was detected.   

3.C.4. Photon count probability distribution for all paths of a single molecule 

When all possible intensity paths are taken into account, the photon counting 

probability distribution for a molecule of species β , ( )1P Mβ τn , is a weighted average 

over all paths of the photon counting probability distribution ( )1P Mlβ τn , 

 ( ) ( ) ( ) ( )1 1P = PM MlS
l lβ β βτ τ τ∫n nD P  (3.35) 

( )lβ τP is given by Eq. (3.30), and S  is the set of paths from all initial positions to all 

final positions after a time intervalτ .  The only variable in ( )1P Mlβ τn  that depends on 

the path is the value ( )Mlβ τΛ , given by Eqs. (3.31) and (3.34).  So, the path integral can 

be recast in terms of a simple integral of ( ) ( )( )1P =Poi ,Ml Mlβ βτ τΛn n  against the 

probability for a given value of ( )Mlβ τΛ , 

 ( ) ( ) ( )1 1

0

P = P Poi ,M Mdβ βτ τ
∞

Λ Λ Λ∫n n  (3.36) 

 

The expression ( )1P Mβ τn  is the Poisson transform of ( )1P Mβ τΛ .  There are two possible 

spaces to work in, the photon count n -space and the cumulative intensity Λ -space.  

Functions in Λ  space are denoted with a tilde.  The probability density ( )1P Mβ τΛ  is 

given by the expression 

 ( ) ( ) ( ) ( )( )1P =M MlS
l lβ β βτ τ δ τΛ Λ −Λ∫ D P  (3.37) 
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This is the probability density, considering all possible paths, to have a particular value of 

the cumulative intensity Λ  at a time intervalτ .  We approximate this integral later using 

Monte Carlo sampling of possible diffusion paths. (NOTE: this function ( )1P Mβ τΛ  

corresponds to the probability density ( )EP  in [158]). The function ( )1P Mβ τΛ  depends 

on the diffusion time D
βτ  and brightness Mqβ  of each species.  Working in Λ  space is 

advantageous because changes in the brightness and diffusion time parameters for the 

species β  can be taken into account by scaling in the appropriate dimensions.  A change 

in Mqβ  corresponds to a scaling in the Λ  dimension since ( )Mlβ τΛ  is directly 

proportional to Mqβ .  A change in D
βτ  corresponds to scaling in both the Λ and τ  

dimensions.  The diffusion time enters the model only as a product of the form Dσ τ∆  

(see Eq. (3.30)).  A scaling in the time interval τ  axis accounts for a change in diffusion 

time in that expression.  The scaling in Λ  is also necessary since ( )Mlβ τΛ  is a 

cumulative integral over time which increases proportionally with a scaling in the time 

interval axis.  If ( )1P Mσ τΛ  is computed for a standard species σ  with the diffusion time 

D
στ  and brightness Mqσ , then for a different species β  with diffusion time D

βτ  and 

brightness Mqβ , we have the scaling law 

 ( )1 1P P
D D

M
M M D D

M

q
q

σ σ σ
β σ

β β β

τ ττ τ
τ τ

 
Λ = Λ  

 
 (3.38) 
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So, if one calculates ( )1 corrP Mσ τΛ  for the molecule that emitted the start photon, and 

( )1 uncP Mσ τΛ  for the molecules that did not, any differences in diffusion time and brightness 

between molecular species can be calculated using the scaling law. 

For the background source 0β = , assumed to be a pure Poisson source with 

intensity 0Mk  in the monitor detection channel, the photon count probability distribution 

is 

 ( ) ( )0 0P Poi ,M Mkτ τ=n n  (3.39) 

In Λ -space, this is  
 ( ) ( )0 0P M Mkτ δ τΛ = Λ −  (3.40) 

 
 

3.C.5. Photon count probability distribution for all molecules in solution 

We combine the photon count probability distributions for single molecules to 

obtain the photon count probability distribution for all molecules in solution.  The 

molecules are assumed to be non-interacting (at least within the diffusion time), so we 

assume independence when we combine the photon count distributions.  This means that 

the photon count distribution for the combined source of all molecules and background is 

the convolution of the photon count distributions for all molecules and background (See 

appendix 3.E).  The photon count distribution of probability for all molecules in solution 

given that molecule 1h =  of species α  emitted a start photon is then,  

 ( ) ( ) ( ) ( ),1 corr 1 unc
0 1

1

P = P P P
F

M M M M
β α β

α α
β

τ τ
−

=

 
∗ ∗ ∗ 

 
∏

δ
n n

N
 (3.41) 

Note that the symbol for convolution ∗  is inside the parentheses, indicating repeated 

convolutions rather than products. This is the convolution of the distributions for the 
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background, the molecule that emitted the start photon, and all the other molecules 

starting with species 1β = , all the way up to Fβ = .  If the start photon came from the 

background 0α = , then corr
1P Mα  is removed from the above successive convolutions.  

Forα β= , there are 1α −N convolutions for the uncorrelated molecules, since one of 

molecules emitted the photon and is taken into account by1 corrP Mα .  As shown in appendix 

3.F, these convolutions can be performed equivalently in Λ -space and n  space.  To 

convert Eq. (3.41) to Λ -space, replace each n  with aΛ , and place a tilde over each 

quantity P ,  

 ( ) ( ) ( ) ( ),1 corr 1 unc
0 1

1

P = P P P
F

M M M M
β α β

α α
β

τ τ
−

=

 
Λ ∗ ∗ ∗ Λ 

 
∏

δN
 (3.42) 

 
To obtain the photon count probability distribution for an arbitrary start photon, 

we sum over all possible sources α  of the start photon, 

 ( ) ( )
1

P = P
F

S
M M

S

k
k
α

α
α

τ τ
=
∑n n  (3.43) 

The weighting factor S

S

k
k
α  is the probability that the start photon came from sourceα . 

FIMDA uses a series of photon counting histograms with different time bin 

widths to extract the occupancy, diffusion time, and brightness of several diffusing 

species simultaneously.  A modification of Eq. (3.41)can be used to model the FIMDA 

histogram.  In PAID, a photon is received at the start of each counting interval.  Because 

of this, there is a distinction between correlated and uncorrelated molecules.  However, in 

FIMDA, the start of the counting interval is uncorrelated with the photon sequence.  If we 

remove the correlated photon count distribution in Eq. (3.41), we obtain a model for the 
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FIMDA histogram.  The single-molecule photon count distributions used in this model 

are calculated as described above. 

3.C.6. Photon count distribution of stop channel intensity for a single molecule in 

solution 

To model the PAID function, we will combine the expressions for the photon 

count distribution with the cross-correlation given in the previous sections.  The primary 

task is to calculate the distribution of the intensity in the stop detection channel T over 

the monitor photon count variable n  at a time intervalτ , ( )S TMkα β τ→ n , given that a start 

photon was received from source α  at time interval 0τ = .  This distribution, 

( )S TMkα β τ→ n , is related to the PAID function considering only a single species β  by a 

constant factor: a normalization is applied to ( )S TMkα β τ→ n , similar to Eq. (3.29),  

( ) ( )1 S S TM
STM

S T

k k
C

k k
α α β τ

τ →=
n

n . 

For a single path l  of a molecule from source β , the monitor photon count 

distribution of the stop channel intensity is calculated by multiplying the rate in the stop 

channel by the probability to have received n  monitor photons, 

 ( ) ( ) ( )1 1PMTl Ml Tlkβ β βτ τ λ τ=n n  (3.44) 

The superscript 1 indicates that the expression is for a single molecule.  As a function of 

time intervalτ , the total intensity in the stop channel is ( )Tlβλ τ .  ( )1
MTlkβ τn  is how this 

intensity is on average divided up among the different values of the monitor photon 

countsn . 
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When all possible paths are taken into account, the monitor photon count 

distribution of the stop channel intensity for a single molecule of species β , ( )1
MTkβ τn , 

is a weighted average over all paths of the distribution for a single path ( )1
MTlkβ τn , 

 ( ) ( ) ( ) ( ) ( )1 1PMT Ml TlS
k l lβ β β βτ τ τ λ τ= ∫n nD P   (3.45) 

As in Eq. (3.37), ( )lβ τP  is given by Eq. (3.30), and S  is the set of paths from all initial 

positions to all final positions after a time intervalτ .  We can rewrite Eq. (3.45) as an 

integration of the Poisson distribution against the contribution to the stop channel 

intensity for a given value of cumulative intensityΛ , 

 ( ) ( ) ( )1 1

0

= Poi ,MT MTk d kβ βτ τ
∞

Λ Λ Λ∫n n  (3.46) 

where 

 ( ) ( ) ( ) ( ) ( )( )1 =MT Tl MlS
k l lβ β β βτ τ λ τ δ τΛ Λ −Λ∫ D P  (3.47) 

The difference between this equation and Eq. (3.37) is the additional factor of the 

intensity in the stop channel of the path l , ( )Tlβλ τ .  Because of this factor, Eq. (3.47) 

gives the cumulative intensity distribution of the stop channel intensity, rather than the 

cumulative intensity distribution of probability.   

The scaling law in Eq. (3.38) also applies here, with one additional factor, the 

brightness in the stop detector channel Tqβ .  If ( )1
MTkσ τΛ  is computed for a standard 

species σ  with the diffusion time D
στ  and brightness Mqσ  in the monitor channel and 

brightness Tqσ  in the stop channel, then for a different species β  with diffusion time D
βτ , 
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brightness Mqβ  in the monitor channel and brightness Tqβ  in the stop channel, we have 

the following scaling law 

 ( )1 1
D D

T M
MT MT D D

T M

q qk k
q q
β σ σ σ

β σ
σ β β β

τ ττ τ
τ τ

 
Λ = Λ  

 
 (3.48) 

As with the cumulative intensity probability distribution in Eq. (3.37), one evaluation of 

the cumulative intensity distribution of the stop channel intensity is made for the 

molecule that emitted the start photon, ( )1 corr
MTkβ τΛ , and one for the molecules that did 

not, ( )1 unc
MTkβ τΛ .  Any changes in the parameters D

βτ , Mqβ , and Tqβ  can be taken into 

account by using the scaling law. 

For the background source 0β = , assumed to be a pure Poisson source with 

intensity 0Mk  in the monitor detection channel and intensity 0Tk  in the stop detection 

channel, the photon count distribution of stop channel intensity is 

 ( ) ( )0 0 0Poi ,MT T Mk k kτ τ=n n  (3.49) 

In Λ -space this becomes, 

 ( ) ( )0 0 0M T Mk k kτ δ τΛ = Λ −  (3.50) 

 

3.C.7. PAID function for all molecules in solution 

To account for all of the other molecules in solution, ( )1
MTkβ τn is convolved with 

the photon count probability distribution for all other molecules and background (see 

appendix 3.E).  If the molecule in question emitted the start photon, then  

 ( ) ( ) ( ) ( ) ( ),corr 1 corr 1 unc
0

1

, P P
F

S MT M MT Mk k γ α γ

α β α γ
γ

τ α β τ
−

→
=

 
= ∗ ∗ ∗ 

 
∏

δ
n δ n

N
 (3.51) 
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The first factor is the background photon count probability distribution.  The second 

factor is the monitor photon count distribution of stop channel intensity for the molecule 

that emitted the start photon.  The rest of the factors come from the molecules of all the 

species that did not emit the photon.  These are successive convolutions, not products, as 

indicated by the star ∗  inside the parentheses.  Forα γ= , there are 1α −N convolutions 

for the uncorrelated molecules, since one of molecules emitted the photon and is taken 

into account by1 corr
MTkα .   

If the molecule in question did not emit the start photon, then 

 

( )

( )( ) ( ) ( ) ( ) ( )

unc

, ,1 corr 1 unc 1 unc
0

1

  , P P P

S MT

F

M MT MT M

k

k γ

α β

α γ β γ

β α β γ
γ

τ

α β τ

→

− −

=

=

 
− ∗ ∗ ∗ ∗ 

 
∏

δ δ

n

δ n
N

N
 (3.52) 

The pre-factor is how many molecules of species β  there are in solution.  The first 

convolved factor is the background photon count probability distribution.  The second 

convolved factor is the monitor photon count probability distribution for the molecule 

that emitted the start photon.  The third convolved factor is the monitor photon count 

distribution of stop channel intensity for the molecule of species β  that did not emit the 

start photon. The rest of the convolved factors come from the molecules of all the species 

that did not emit the photon.  Forα γ= , there is one less convolution for the uncorrelated 

molecules, since one of molecules emitted the photon and is taken into account by1 corrP MTα .  

For β γ= , there is one less convolution for the uncorrelated molecules, since one of 

molecules is the one whose intensity is being calculated and is taken into account 

with1 unc
MTkβ . 

For the background,  
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 ( ) ( ) ( ) ( ),1 corr 1 unc
0 0

1

P P
F

S MT M MT Mk k γ α γ

α α γ
γ

τ τ
−

→
=

 
= ∗ ∗ ∗ 
 

∏
δ

n n
N

 (3.53) 

The first factor is the monitor photon count distribution of stop channel intensity for the 

background.  The second factor is the monitor photon count probability distribution for 

the molecule that emitted the start photon.  The rest of the factors come from the 

molecules of all the species that did not emit the photon.  Forα γ= , there is one less 

convolution for the uncorrelated molecules, since one of molecules emitted the photon 

and is taken into account by1 corrP MTα .   

We now sum the contributions to ( )S TMkα β τ→ n  of all molecules, obtaining, 

 ( ) ( ) ( )corr unc
S TM S TM S TMk k kα β α β α βτ τ τ→ → →= +n n n  (3.54) 

The first term on the right is for any contribution that is correlated with the start photon, 

and the second term is for the contribution that is uncorrelated with the start photon.  To 

obtain the final expression for the PAID function, we sum over all possible sources α  of 

the start photon, weighted by the intensity of each source in the start channel, just as with 

the cross-correlation.  To normalize the result, we divide by the product of the total count 

rate in the start channel Sk  multiplied by the total count rate in the stop channel Tk , as in 

Eq.(3.29). 

 ( )
( )

0 0

M M

S S TM

STM
S T

k k
C

k k

α α β
α β

τ
τ

→
= ==
∑∑ n

n  (3.55) 

Remember, to convert any of the n -space expressions to Λ -space, replace each n  with 

aΛ , and place a tilde over each quantity P or k .  This is the final expression for the PAID 

function.  It is calculated by adjusting the distributions ( )1 uncP Mβ τΛ , ( )1 unc
MTkβ τΛ , 
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( )1 corrP Mβ τΛ  and ( )1 corr
MTkβ τΛ  for the parameters of each species β , and using Eqs. (3.51)-

(3.55).  In appendix 3.D, we will describe in more detail how to calculate the PAID 

function practically. 
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3.D. Implementation of the model 

3.D.1. Evaluation of kernels for model 

The distributions ( )1 uncP Mσ τΛ , ( )1 unc
MTkσ τΛ , ( )1 corrP Mσ τΛ  and ( )1 corr

MTkσ τΛ  for the 

standard species σ  are evaluated using Monte Carlo generation of possible diffusion 

paths l , a modification of the simulations described in section 3.3.1.  The standard species 

has a diffusion time 1D
στ = , a brightness 1Mqσ =  in the monitor channel and brightness 

1Tqσ =  in the stop channel (each of these has arbitrary units.)  As in the previous section, 

a diffusion path l  is simulated by a series of three-dimensional random distance steps, 

with mean 0µ =  and standard deviation 2Dσ τ= ∆ , where D  is the diffusion constant 

and 210 D
στ τ−∆ =  is the time interval step.  The initial positions are drawn from a uniform 

distribution across the simulation box ( )( )
box

10lx
V

=P  for the uncorrelated molecules, 

and from the detection profile ( )( ) ( )( )corr0 0l lx xσ=P P for the correlated molecules.  The 

uncorrelated distributions are formed from simulations restricted to a finite box of size 

boxV with periodic boundary conditions.  Since the probability density for the initial 

uncorrelated spatial position is a constant with respect to spatial position, the size of the 

simulation box must be restricted to have a significant number of diffusion-driven 

crossings of the detection volume.  The periodic boundary conditions are necessary to 

avoid a drain in the number of the molecules from the simulation box.  For the correlated 

distribution, there is no restriction on the simulation box size.  The probability density for 
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the initial correlated spatial position is restricted to the detection volume, and the exit of 

the molecule from the region of the detection volume causes the average number of 

molecules per detection volume to return its uncorrelated value.  For the speciesσ , the 

joint probability for the whole path up to time interval τ is given by the following 

expression (Eq. (3.30) without the limit):  

 ( )
( )

( )( )
21

3 2
0

0 exp
44

h h
l ll

l
h dV

x xdxl x
DD

τ τ

σ
σσ

τ
τπ τ

+∆

=

    −  = −     ∆∆     
∏ ∫P P  (3.56) 

 The distributions are evaluated at a series of time intervals τ  that is 

logarithmically spaced over 10 decades from 610 D
στ τ−=  to 410 D

στ τ=  with 100 bins per 

decade. The cumulative intensity Λ  bins are logarithmically spaced over 10 decades 

from 610 D
Mqσ στ

−Λ =  to 410 D
Mqσ στΛ =  with 10 bins per decade.  At each time interval τ  

in the logarithmically spaced series, the cumulative intensity ( ) ( )
0

dMl Ml

τ

σ στ λ τ τ′ ′Λ ≡ ∫  

and the intensity in the stop channel ( )Tlσλ τ  are evaluated.  An entry of 1 is entered at 

the corresponding ( ),τ Λ  bin in the cumulative intensity probability distribution, 

( )1 corrP Mσ τΛ or ( )1 uncP Mσ τΛ .  Also, an entry ( )Tlσλ τ  is added to the corresponding ( ),τ Λ  

bin in the cumulative intensity distribution of stop channel intensity, 

( )1 corr
MTkσ τΛ or ( )1 unc

MTkσ τΛ .  After simulating a total of 510 paths in the correlated case, and 

710  paths in the uncorrelated case, the estimated distributions are divided by the number 

of paths used.  In the uncorrelated case, there are actually only 410  diffusion paths 

simulated.  Each diffusion path is used with 310  evenly spaced starting points to give a 

total of 710  effective paths.  We can use many different starting points in this case 
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because the molecules are uncorrelated: there are no special properties of the initial 

position. 

3.D.2. Implementation of the model and fitting routine 

We now summarize how we in practice calculate the PAID function for a given 

set of parameters for F diffusing species and background: the diffusion time D
ατ , the 

occupancy cα , the brightness per molecule Aqα , and the background intensity 0 Aq .  For 

each species β , we calculate the single molecule cumulative intensity distributions of 

probability and stop channel intensity for both the correlated and uncorrelated initial 

positions.  We use Eq. (3.38) to calculate ( )1 corrP Mβ τΛ  and ( )1 uncP Mβ τΛ  and use Eq. (3.48) 

to calculate ( )1 corr
MTkβ τΛ  and ( )1 unc

MTkβ τΛ  from the distributions estimated for the standard 

set of parameters.  In this way, the diffusion time of each species D
βτ , brightness in the 

monitor channel Mqβ , and brightness in the stop channel Tqβ  are all accounted for.   

In building up the PAID function ( )STMC τn  from these initial distributions, 

many convolutions are necessary.  In order to perform them quickly, we have developed 

an efficient algorithm to compute convolutions in a quasi-logarithmic scale (see appendix 

3.H).    ( )1 uncP Mβ τΛ , ( )1 unc
MTkβ τΛ , ( )1 corrP Mβ τΛ  and ( )1 corr

MTkβ τΛ  are rebinned into the quasi-

logarithmic scale described in appendix 3.H, and the convolutions are performed in Λ - 

space.   

Now, we use Eqs. (3.51)-(3.54) to calculate the monitor photon count 

distributions of stop channel intensity for all of the categories of molecules.  For each 
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diffusing species 0β > , there is a distribution for the correlated and uncorrelated 

molecules.   

The simulations used to form the distributions ( )1 corrP Mβ τΛ  and ( )1 corr
MTkβ τΛ  for 

correlated initial positions are not restricted to a finite simulation box.  Initially, the 

molecules are inside the detection volume, but the molecules are allowed to diffuse out of 

the detection volume without restriction as the simulation time passes.  Because the size 

of the simulation box is unrestricted, the difference between γN  and ( ),γ α γ−δN  is 

ignored: in Eqs. (3.51)-(3.54), the expression ( ),α γδ  is dropped. 

The simulations used to form the distributions ( )1 uncP Mβ τΛ  and ( )1 unc
MTkβ τΛ  for 

uncorrelated initial positions are restricted to a box with a volume boxV , which is larger 

than the effective detection volume: box effV V .  The box has harmonic boundary 

conditions, so that a molecule that comes out of one side reenters the other side.  The 

fundamental concentration for the distributions formed from these simulations is
box

1
V

.  

Successive convolution of the distribution ( )1 uncP Mβ τΛ  models an increasing 

concentration, but only in discrete steps.  If the number of uncorrelated molecules of 

species β  inside this box is box,N β , then we model the uncorrelated photon count 

probability distribution using ( )( ) box,1 uncP
N

M
β

β τΛ ∗ .  To have the proper occupancy, then the 

following relation should be satisfied,  

 box,

box sol eff

.
N c
V V

β β β= =
N
V

 (3.57) 
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Because the volume of the simulation box used for the distributions for 

uncorrelated molecules is much smaller than the volume of solution, the distributions 

( )1 uncP Mβ τΛ  and ( )1 unc
MTkβ τΛ  account for a much larger concentration than in section 

3.2.6, 
box

1
V

rather than
sol

1
V

.  To obtain the proper occupancy, the number of molecules 

βN  in Eqs. (3.51)-(3.54) is replaced by the number of molecules in the simulation 

box, box,N β .  Using the small box size boxV  for the uncorrelated molecules and the large 

box size solV  for the correlated molecules, Eq. (3.51), which is for correlated molecules, is 

rewritten in Λ -space, 

 ( ) ( ) ( ) ( )box,corr 1 corr 1 unc
0

1

, P P
F N

S MT M MT Mk k γ

α β α γ
γ

τ α β τ→
=

 
Λ = ∗ ∗ ∗ Λ 

 
∏δ  (3.58) 

Equation (3.52), which is for the uncorrelated molecules, is rewritten 

 ( ) ( ) ( ) ( )box, ,unc 1 corr 1 unc 1 unc
box, 0

1

P P P
F N

S MT M MT MT Mk N k γ β γ

α β β α β γ
γ

τ τ
−

→
=

 
Λ = ∗ ∗ ∗ ∗ Λ 

 
∏

δ
 (3.59) 

Equation (3.53), which is for the background, is rewritten 

 ( ) ( ) ( )box,1 corr 1 unc
0 0

1

P P
F N

S MT M MT Mk k γ

α α γ
γ

τ τ→
=

 
Λ = ∗ ∗ ∗ Λ 

 
∏  (3.60) 

Finally, Eq. (3.54), which combines these expressions, is rewritten  

 ( ) ( ) ( )corr unc
S TM S MT S MTk k kα β α β α βτ τ τ→ → →Λ = Λ + Λ  (3.61) 

If box,N β  is not an integer, then the distributions are calculated with the closest integer 

number of molecules in the simulation box box,N β′ , adjusting the brightness Mqβ′  to satisfy 

the relation box, box,M Mq N q Nβ β β β′ ′ = .  This keeps the total count rate from the species β  

constant, while using the closest integer for the number of molecules in the simulation 
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box.  Note that the adjusted value for the brightness Mqβ′  is used only for the expressions 

for the uncorrelated molecules, not the correlated molecules. 

Converting Eq. (3.55) to Λ -space, we get for the cumulative intensity distribution 

of correlation, 

 ( )
( )

0 0

M M

S S TM

STM
S T

k k
C

k k

α α β
α β

τ
τ

→
= =

Λ
Λ =

∑∑
 (3.62) 

This is then converted to n -space to get the PAID function, 

 ( ) ( ) ( )
0

= Poi ,STM STMC d Cτ τ
∞

Λ Λ Λ∫n n  (3.63) 

The kernels used as the basis for the model have finite sized bins inΛ , which are 

indexed by b  and have the range )min max,b bΛ Λ .  Because of the finite bin size, what is 

really calculated is the average over a bin
( )max

min

max min

b

b STM

b b

d C τ
Λ

Λ
′ ′Λ Λ

Λ −Λ
∫

.  We assume that the 

amplitude is constant across the bins, so that ( )
( )max

min

max min

b

b STM

STM b b

d C
C

τ
τ

Λ

Λ
′ ′Λ Λ

Λ ≈
Λ −Λ

∫
 for Λ  in 

the range )min max,b bΛ Λ .   

The expression for ( )STMC τn  as calculated until now gives the instantaneous 

rates at a particularτ .  However, the time interval bins for the photon counting data have 

finite extent, and so ( )STMC τn  must be averaged over the range of the time bin.  To 

calculate ( )STMC τΛ  within the time interval minτ  and maxτ , we interpolate between 

( )minSTMC τΛ  and ( )maxSTMC τΛ .  We project ( )minSTMC τΛ  forward in time from minτ , 
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noting that the limits of a bin in cumulative intensity scales with time interval, 

( )min min
min

b ττ
τ

′Λ = Λ and ( )max max
min

b ττ
τ

′Λ = Λ .  The value interpolated forward from minτ  

is ( )
( )

( )

max

min

max min
min

b

b STM

STM
b b

d C
C

τ
τ τ

τ

Λ

Λ
′ ′Λ Λ

Λ ≈
Λ −Λ

∫
, where b  is chosen so that  min

min max
b bτ

τ
Λ ≤ Λ < Λ .  

Similarly, the value interpolated backward from maxτ  

is ( )
( )

( )

max

min

max min
max

b

b STM

STM
b b

d C
C

τ
τ τ

τ

Λ

Λ
′ ′Λ Λ

Λ ≈
Λ −Λ

∫
, where b  is chosen so that  max

min max
b bτ

τ
Λ ≤ Λ < Λ .  

The interpolated values are averaged over the rectangle bounded by  minτ , maxτ , min
bΛ , 

and max
bΛ .  Note that more than one bin may contribute to the averaging. 

The final integration over Λ shown in Eq. (3.63) is implemented as a matrix 

multiplication.  The approximation that the value of ( )STMC τΛ  is constant over a bin 

with limits min
bΛ , and max

bΛ  leads to the approximation, 

 ( )
( )

( )
max

maxmin

minmax min

Poi ,

b

bb

b

STM

STM b b
b

d C
C d

τ
τ

Λ

ΛΛ

Λ

′ ′Λ Λ
′ ′= Λ Λ

Λ −Λ
∫

∑ ∫n n  (3.64) 

The integral on the right can be expressed in terms of the incomplete gamma 

function ( ) ( )
1

0

1,
x

t aa x e t dt
a

γ − −=
Γ ∫ , 

 ( ) ( ) ( )max

min
max minPoi , 1, 1,

b

b

b bd γ γ
Λ

Λ
Λ Λ = + Λ − + Λ∫ n n n  (3.65) 

We keep the bin spacing fixed, so the integrals in Eq.(3.65) need to be performed only 

once to create the matrix. 
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3.E. Combination of sources for probability distribution 

We are given two photon count probability distributions, ( )1 1P n and ( )2 2P n . 

Now, suppose we want to determine the photon count probability distribution for the 

combined source ( )P n , where 1 2= +n n n .  This can be determined by  

 ( ) ( ) ( )
1

1 1 2 1 1
0

P P P |
=

= −∑
n

n

n n n n n  (3.66) 

To obtain the probability to count n  photons from the combined source, we sum over all 

possible values of 1n .  For each value 1n , the value of 2n  is restricted so that the value of 

the combined total counts is correct, 2 1= −n n n .  The probability to have 1n  counts from 

source 1 is ( )1 1P n , and the probability to have 2 1= −n n n  counts in source 2 given that 

there were 1n  counts from source 1 is ( )2 1 1P |−n n n .  We now assume that sources 1 and 

2 are independent, so that ( ) ( )2 1 1 2 1P | P− = −n n n n n , and Eq. (3.66) reduces to a 

convolution, 

 ( ) ( ) ( ) ( )( )
1

1 1 2 1 1 2
0

P P P P P
=

= − ≡ ∗∑
n

n

n n n n n  (3.67) 

To combine more than two independent sources, one simply performs successive 

convolutions, ( ) ( )( )1 2 3 4P P P P P= ∗ ∗ ∗ ∗n n . 
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3.F. Equivalence of convolutions in n-space and Λ -space 

One property that needs to be established is the equivalence of performing 

convolutions in n  space and Λ space. Consider three distributions ( )f τn , ( )g τn , 

and ( )h τn , such that h  is the convolution of f  and g :  

 ( ) ( ) ( ) ( )( )
0

h f ' g ' f gτ τ τ τ
′=

= − ≡ ∗∑
n

n
n n n n n  (3.68) 

We can write each of these distributions in n  as a Poisson transformation, 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

f f Poi ,

g g Poi ,

h h Poi ,

d

d

d

τ τ

τ τ

τ τ

∞

∞

∞

= Λ Λ Λ

= Λ Λ Λ

= Λ Λ Λ

∫

∫

∫

n n

n n

n n

 (3.69) 

By substituting the Poisson transformation expressions for ( )f ,τn  and ( )g ,τn  into Eq. 

(3.68), we get 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

f f g g f g
' 00 0

f f g g f g
0 0

0 0

h f g Poi , ' Poi , '

f g Poi ,

f g Poi ,

d d

d d

d d

τ τ τ

τ τ

τ τ

∞ ∞

=

∞ ∞

∞ Λ

= Λ Λ Λ Λ Λ Λ −

= Λ Λ Λ Λ Λ +Λ

 
′ ′ ′= Λ Λ Λ Λ −Λ Λ 

 

∑∫ ∫

∫ ∫

∫ ∫

n

n

n n n n

n

n

 (3.70) 

Since we also know that ( ) ( ) ( )
0

h , h , Poi ,dτ τ
∞

= Λ Λ Λ∫n n , we find 
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 ( ) ( ) ( ) ( )( )
0

h f g f gdτ τ τ τ
Λ

′ ′ ′Λ = Λ Λ Λ −Λ = ∗ Λ∫  (3.71) 

 
 This shows that convolutions can equivalently be performed either in n -space orΛ -

space. 
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3.G. Combination of sources for the monitor photon count distribution 

of stop channel intensity 

We now determine how to combine the monitor photon count distributions of stop 

channel intensity for multiple sources.  This distribution, ( )S TMkα β τ→ n , is related to the 

PAID function considering only a single species β  by a constant factor: a normalization 

is applied to ( )S TMkα β τ→ n , similar to Eq. (3.29) ( ) ( )1 S S TM
STM

S T

k k
C

k k
α α β τ

τ →=
n

n .  

Consider two intensity paths η  and ξ  from independent sources 1 and 2, respectively.  

The intensity of each path as a function of time interval is given for each detector 

channel A , ( )1
Aηλ τ  and ( )2

Aξλ τ .  Each source may be a single molecule, or more than one 

molecule.  For each path, the monitor photon count distribution of the stop channel 

intensity is calculated by multiplying the rate in the stop channel by the probability to 

have received n  monitor photons, 

 
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

P

P
MT M T

MT M T

k

k
η η η

ξ ξ ξ

τ τ λ τ

τ τ λ τ

=

=

n n

n n
 (3.72) 

For the path η  of source 1, the total intensity in the stop channel is ( )1
Tηλ τ  as a function 

of time intervalτ .  ( )1
MTk η τn  gives how much of that intensity on average is detected for 

a given value of monitor photon countsn .  ( )2
MTk ξ τn  is interpreted similarly. 
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When all possible paths are taken into account, the monitor photon count 

distributions of the stop channel intensity, ( )1
MTk τn and ( )2

MTk τn , are weighted averages 

over all paths of ( )1
MTk η τn  and ( )2

MTk ξ τn , respectively, 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

1 1 1

2 2 2

MT MTS

MT MTS

k k

k k

η

ξ

τ η η τ τ

τ ξ ξ τ τ

=

=

∫
∫

n n

n n

D P

D P
  (3.73) 

( )1 η τP is the probability for a given intensity pathη , and 1S  is the set of all intensity 

paths from up to a time intervalτ .  ( )2 ξ τP  and 2S  are defined analogously.  The 

monitor photon count probability distributions ( )1PM τn  and ( )2PM τn  are calculated by 

similar weighted averages, 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

1 1 1

2 2 2

P P

P P

M MS

M MS

η

ξ

τ η η τ τ

τ ξ ξ τ τ

=

=

∫
∫

n n

n n

D P

D P
 (3.74) 

 

Now, say we want to determine the monitor photon count distributions of stop 

channel intensity for the combined source,  

 ( ) ( ) ( )1 2
T T Tηξ η ξλ τ λ τ λ τ= +  (3.75) 

As before, the monitor photon count distribution of the stop channel intensity is 

calculated by multiplying the rate in the stop channel by the probability to have received 

n  monitor photons, 

 ( ) ( ) ( )PMT M Tk ηξ ηξ ηξτ τ λ τ=n n  (3.76) 

When all possible paths are taken into account, the monitor photon count 

distributions of the stop channel intensity for the combined source, ( )MTk τn , is 
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 ( ) ( ) ( ) ( ) ( ) ( )1 2

1 2
MT MTS S

k k ηξτ η η τ ξ ξ τ τ= ∫ ∫n nD P D P   (3.77) 

Now, since sources 1 and 2 are independent, the monitor photon count probability 

distribution for the combined source is the convolution of the distributions for the 

individual sources (see appendix 3.C),  

 ( ) ( )( )1 2P P PM M Mηξ η ξτ τ= ∗n n  (3.78) 

Using this along with Eq. (3.75), we rewrite Eq. (3.76), 

 ( ) ( ) ( ) ( ) ( )( )1 2 1 2

0

P ' P 'MT M M T Tk ηξ η ξ η ξτ τ τ λ τ λ τ
′=

 = − +  
∑

n

n

n n n n  (3.79) 

By substituting this into Eq. (3.77) and grouping terms from the same source, we get  

 

( ) ( ) ( ) ( ){
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) }

1

2

1

2

1 1

0

2 2

1 1

2 2

'

P '

P '

'

MT MTS

MS

MS

MTS

k k

k

η

ξ

η

ξ

τ η η τ τ

ξ ξ τ τ

η η τ τ

ξ ξ τ τ

′=

 =  

 × − 
 +  

 × − 

∑ ∫

∫
∫

∫

n

n

n n

n n

n

n n

D P

D P

D P

D P

 (3.80) 

Now, using Eqs. (3.73) and (3.74), we get  

 ( ) ( )( ) ( )( )1 2 2 1P PMT MT M MT Mk k kτ τ τ= ∗ + ∗n n n  (3.81) 

This equation convolves the monitor photon count distribution of stop channel intensity 

for each source with the photon count distribution of the other, and then adds the results.  

This equation along with Eq. (3.78) can be applied successively to combine many 

sources, 

 ( ) ( )
sources 

Pi j
MT MT M

i j i

k kτ τ
≠

 
= ∗ 
 
∑ ∏n n  (3.82) 
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This expression is used in the text to combine the monitor photon count distributions of 

stop channel intensity for all of the molecules in solution. 
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3.H. Efficient calculation of convolutions in a quasi-logarithmic scale 

Because of the large number of convolutions necessary to calculate the PAID 

histogram, it is necessary to have an efficient algorithm for convolutions.  The standard 

method is to Fast Fourier Transform (FFT) the data, multiply the data in the complex 

transform space, and then FFT back to real space (See for example Ch. 13 of [154]).  The 

FFT, however, requires evenly spaced bins, which can produce huge arrays if one wants a 

large dynamic range.  We use a convolution method inspired by the multiple-tau 

correlation technique [152, 153] that uses the FFT for small convolutions.  For each 

vector (a andb ) to be convolved, we produce a series of linearly spaced arrays of length 

64, where the resolution of each is reduced by a factor of 2 compared to its predecessor.  

The structure of these vectors is shown in Fig. 3.12A.  In the figure, the arrays are of 

length 8 (rather than 64) for each factor of 2 in resolution.  The array with the smallest 

spacing is shown at the left.  In Fig. 3.12A, the first array has a spacing of 0.1∆Λ = .  The 

second array has double the spacing, 0.2∆Λ = .  The first four elements are each made up 

of a sum of two elements from the first array.  The third array has a spacing that is 

doubled again, 0.4∆Λ = .  Again, the first four elements are each made up of a sum of 

two elements from the second array.  Continuing this structure to successively lower 

resolution, one obtains a series of linearly spaced arrays that can efficiently span a large 

dynamic range. 

In Figs. 3.12B and 3.12C, we illustrate how the convolution of two series of such 

arrays is performed.  One array is labeled with lower-case letters, and the other is labeled 

with upper-case letters.  To calculate the convolution of two vectors, ∗a b , the arrays 
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with the smallest spacing ( 0.1)∆Λ =  are 

convolved with each other first, as 

shown in Fig. 3.12B.  The FFT 

procedure described above is used, with 

the arrays are zero-padded to twice the 

original length.  We use the FFTW 

(Fastest Fourier Transform in the West) 

set of routines, developed by M. Frigo 

and S. G. Johnson.  The lower half of 

the array becomes the new array for the 

smallest spacing.  The whole array is 

rebinned to the next largest spacing, and 

serves as a contribution to the 

convolution with spacing 0.2∆Λ = .   

In Fig. 3.12C, we show how the 

convolution for the larger spacing 

0.2∆Λ =  is performed.  Because we 

already performed part of the 

convolution with that spacing, we need 

to exclude that contribution in 

subsequent calculations.  This is done by 

setting (or “clipping”) the lower half of 

one sub-array (lower-case) to 0, and convolving it with the other sub-array (upper-case).  

Fig. 3.12: In A, the structure of the arrays 
with quasi-logarithmic spacing used for fast 
convolutions is shown.  In B and C, we 
illustrate how the convolution of two series of 
such arrays is performed.  In D, the 
convolution of two step functions is shown.
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The clipped version from a  is convolved with the full version fromb , and vice versa.  

By adding these results with the array obtained by rebinning the result with spacing 

0.1∆Λ = , we obtain the final result for 0.2∆Λ = .  This allows the use of information 

from higher resolution arrays to contribute to the convolutions with lower resolution 

arrays.   

In the quasi-logarithmically spaced arrays, we approximate the function to be 

convolved by a series of steps; over the range of each bin, the function is assumed to be 

constant.  When two such steps are convolved, we get a triangle, shown in Fig. 3.12D.  

The convolution of the two steps leaks into the next bin.  The discrete convolutions 

shown in Figs. 3.12B and 3.12C do not account for this because they assume that the 

function is nonzero only at discrete values.  In order to approximate the continuous 

functions with the method presented, the convolution is shifted one-half bin up after each 

FFT-based convolution in Figs. 3.12B and 3.12C.   

In Eqs (3.58)-(3.60), there are successive convolutions performed on the same 

array which have the form ( ) box,1 uncP
N

M
γ

γ ∗ .  In order to compute box,N γ  successive 

convolutions on the original distribution1 uncP Mγ , we can use a trick to prevent performing 

box,N γ   convolutions directly.  We express the number box,N γ  in binary.  By recursively 

convolving the original array, we obtain a series of vectors for each convolved power of 

2: 1,2,4,8,…  By convolving only those convolved powers of 2 in the binary 

representation of box,N γ , we obtain ( ) box,1 uncP
N

M
γ

γ ∗ .  This allows the number of convolutions 

performed to increase logarithmically with box,N γ . 
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